tes1-UASNLP2

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3413
  • Accuracy: 0.8705
  • Precision: 0.8858
  • Recall: 0.8803
  • F1: 0.8830

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4596 1.2121 100 0.3631 0.8554 0.8767 0.8605 0.8685
0.254 2.4242 200 0.3413 0.8705 0.8858 0.8803 0.8830
0.1674 3.6364 300 0.3847 0.8793 0.8758 0.9118 0.8934
0.0968 4.8485 400 0.4927 0.8759 0.9145 0.8564 0.8845
0.0614 6.0606 500 0.5308 0.8721 0.8748 0.8981 0.8863
0.0418 7.2727 600 0.6098 0.8759 0.8988 0.8748 0.8867
0.0296 8.4848 700 0.6507 0.8751 0.8910 0.8830 0.8870
0.0183 9.6970 800 0.6822 0.8789 0.8944 0.8865 0.8904

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Arron99/tes1-UASNLP2

Finetuned
(750)
this model