File size: 6,424 Bytes
456147f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
datasets:
- bigcode/commitpackft
- TIGER-Lab/MathInstruct
- meta-math/MetaMathQA
- glaiveai/glaive-code-assistant-v3
- glaive-function-calling-v2
- bugdaryan/sql-create-context-instruction
- garage-bAInd/Open-Platypus
- nvidia/HelpSteer
- bigcode/self-oss-instruct-sc2-exec-filter-50k
metrics:
- code_eval
library_name: transformers
tags:
- code
- granite
- TensorBlock
- GGUF
base_model: ibm-granite/granite-8b-code-instruct-128k
model-index:
- name: granite-8B-Code-instruct-128k
  results:
  - task:
      type: text-generation
    dataset:
      name: HumanEvalSynthesis (Python)
      type: bigcode/humanevalpack
    metrics:
    - type: pass@1
      value: 62.2
      name: pass@1
      verified: false
    - type: pass@1
      value: 51.4
      name: pass@1
      verified: false
    - type: pass@1
      value: 38.9
      name: pass@1
      verified: false
    - type: pass@1
      value: 38.3
      name: pass@1
      verified: false
  - task:
      type: text-generation
    dataset:
      name: RepoQA (Python@16K)
      type: repoqa
    metrics:
    - type: pass@1 (thresh=0.5)
      value: 73.0
      name: pass@1 (thresh=0.5)
      verified: false
    - type: pass@1 (thresh=0.5)
      value: 37.0
      name: pass@1 (thresh=0.5)
      verified: false
    - type: pass@1 (thresh=0.5)
      value: 73.0
      name: pass@1 (thresh=0.5)
      verified: false
    - type: pass@1 (thresh=0.5)
      value: 62.0
      name: pass@1 (thresh=0.5)
      verified: false
    - type: pass@1 (thresh=0.5)
      value: 63.0
      name: pass@1 (thresh=0.5)
      verified: false
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">
            Feedback and support: TensorBlock's  <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
        </p>
    </div>
</div>

## ibm-granite/granite-8b-code-instruct-128k - GGUF

This repo contains GGUF format model files for [ibm-granite/granite-8b-code-instruct-128k](https://huggingface.co/ibm-granite/granite-8b-code-instruct-128k).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

## Prompt template

```
System:
{system_prompt}

Question:
{prompt}

Answer:
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [granite-8b-code-instruct-128k-Q2_K.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q2_K.gguf) | Q2_K | 2.852 GB | smallest, significant quality loss - not recommended for most purposes |
| [granite-8b-code-instruct-128k-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q3_K_S.gguf) | Q3_K_S | 3.304 GB | very small, high quality loss |
| [granite-8b-code-instruct-128k-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q3_K_M.gguf) | Q3_K_M | 3.674 GB | very small, high quality loss |
| [granite-8b-code-instruct-128k-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q3_K_L.gguf) | Q3_K_L | 3.993 GB | small, substantial quality loss |
| [granite-8b-code-instruct-128k-Q4_0.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q4_0.gguf) | Q4_0 | 4.276 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [granite-8b-code-instruct-128k-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q4_K_S.gguf) | Q4_K_S | 4.305 GB | small, greater quality loss |
| [granite-8b-code-instruct-128k-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q4_K_M.gguf) | Q4_K_M | 4.548 GB | medium, balanced quality - recommended |
| [granite-8b-code-instruct-128k-Q5_0.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q5_0.gguf) | Q5_0 | 5.190 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [granite-8b-code-instruct-128k-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q5_K_S.gguf) | Q5_K_S | 5.190 GB | large, low quality loss - recommended |
| [granite-8b-code-instruct-128k-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q5_K_M.gguf) | Q5_K_M | 5.330 GB | large, very low quality loss - recommended |
| [granite-8b-code-instruct-128k-Q6_K.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q6_K.gguf) | Q6_K | 6.161 GB | very large, extremely low quality loss |
| [granite-8b-code-instruct-128k-Q8_0.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q8_0.gguf) | Q8_0 | 7.977 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/granite-8b-code-instruct-128k-GGUF --include "granite-8b-code-instruct-128k-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/granite-8b-code-instruct-128k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```