Edit model card
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

ahmedheakl/asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc - GGUF

This repo contains GGUF format model files for ahmedheakl/asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|begin▁of▁sentence|>{system_prompt}### Instruction:
{prompt}
### Response:

Model file specification

Filename Quant type File Size Description
asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-Q2_K.gguf Q2_K 0.560 GB smallest, significant quality loss - not recommended for most purposes
asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-Q3_K_S.gguf Q3_K_S 0.642 GB very small, high quality loss
asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-Q3_K_M.gguf Q3_K_M 0.704 GB very small, high quality loss
asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-Q3_K_L.gguf Q3_K_L 0.744 GB small, substantial quality loss
asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-Q4_0.gguf Q4_0 0.776 GB legacy; small, very high quality loss - prefer using Q3_K_M
asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-Q4_K_S.gguf Q4_K_S 0.814 GB small, greater quality loss
asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-Q4_K_M.gguf Q4_K_M 0.873 GB medium, balanced quality - recommended
asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-Q5_0.gguf Q5_0 0.936 GB legacy; medium, balanced quality - prefer using Q4_K_M
asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-Q5_K_S.gguf Q5_K_S 0.953 GB large, low quality loss - recommended
asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-Q5_K_M.gguf Q5_K_M 1.002 GB large, very low quality loss - recommended
asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-Q6_K.gguf Q6_K 1.172 GB very large, extremely low quality loss
asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-Q8_0.gguf Q8_0 1.432 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-GGUF --include "asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
27
GGUF
Model size
1.35B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tensorblock/asm2asm-deepseek-1.3b-500k-4ep-x86-O0-arm-gnueabi-gcc-GGUF