File size: 5,790 Bytes
d0dbcfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
license: llama3
language:
- tr
- en
base_model: curiositytech/MARS
pipeline_tag: text-generation
tags:
- TensorBlock
- GGUF
model-index:
- name: MARS
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge TR v0.2
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc
      value: 46.08
      name: accuracy
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU TR v0.2
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 47.02
      name: accuracy
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA TR v0.2
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: acc
      value: 49.38
      name: accuracy
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande TR v0.2
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 53.71
      name: accuracy
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k TR v0.2
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 53.08
      name: accuracy
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">
            Feedback and support: TensorBlock's  <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
        </p>
    </div>
</div>

## curiositytech/MARS - GGUF

This repo contains GGUF format model files for [curiositytech/MARS](https://huggingface.co/curiositytech/MARS).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

<div style="text-align: left; margin: 20px 0;">
    <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
        Run them on the TensorBlock client using your local machine ↗
    </a>
</div>

## Prompt template

```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [MARS-Q2_K.gguf](https://huggingface.co/tensorblock/MARS-GGUF/blob/main/MARS-Q2_K.gguf) | Q2_K | 2.961 GB | smallest, significant quality loss - not recommended for most purposes |
| [MARS-Q3_K_S.gguf](https://huggingface.co/tensorblock/MARS-GGUF/blob/main/MARS-Q3_K_S.gguf) | Q3_K_S | 3.413 GB | very small, high quality loss |
| [MARS-Q3_K_M.gguf](https://huggingface.co/tensorblock/MARS-GGUF/blob/main/MARS-Q3_K_M.gguf) | Q3_K_M | 3.743 GB | very small, high quality loss |
| [MARS-Q3_K_L.gguf](https://huggingface.co/tensorblock/MARS-GGUF/blob/main/MARS-Q3_K_L.gguf) | Q3_K_L | 4.025 GB | small, substantial quality loss |
| [MARS-Q4_0.gguf](https://huggingface.co/tensorblock/MARS-GGUF/blob/main/MARS-Q4_0.gguf) | Q4_0 | 4.341 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [MARS-Q4_K_S.gguf](https://huggingface.co/tensorblock/MARS-GGUF/blob/main/MARS-Q4_K_S.gguf) | Q4_K_S | 4.370 GB | small, greater quality loss |
| [MARS-Q4_K_M.gguf](https://huggingface.co/tensorblock/MARS-GGUF/blob/main/MARS-Q4_K_M.gguf) | Q4_K_M | 4.583 GB | medium, balanced quality - recommended |
| [MARS-Q5_0.gguf](https://huggingface.co/tensorblock/MARS-GGUF/blob/main/MARS-Q5_0.gguf) | Q5_0 | 5.215 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [MARS-Q5_K_S.gguf](https://huggingface.co/tensorblock/MARS-GGUF/blob/main/MARS-Q5_K_S.gguf) | Q5_K_S | 5.215 GB | large, low quality loss - recommended |
| [MARS-Q5_K_M.gguf](https://huggingface.co/tensorblock/MARS-GGUF/blob/main/MARS-Q5_K_M.gguf) | Q5_K_M | 5.339 GB | large, very low quality loss - recommended |
| [MARS-Q6_K.gguf](https://huggingface.co/tensorblock/MARS-GGUF/blob/main/MARS-Q6_K.gguf) | Q6_K | 6.143 GB | very large, extremely low quality loss |
| [MARS-Q8_0.gguf](https://huggingface.co/tensorblock/MARS-GGUF/blob/main/MARS-Q8_0.gguf) | Q8_0 | 7.954 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/MARS-GGUF --include "MARS-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/MARS-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```