hunyuan
custom_code
File size: 12,744 Bytes
42a3dc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# coding=utf-8
# Copyright (C) 2024 THL A29 Limited, a Tencent company.  All rights reserved.

import os
import base64
import logging
import tiktoken
import unicodedata
from transformers import PreTrainedTokenizer, AddedToken
from typing import Collection, Dict, List, Set, Tuple, Union


logger = logging.getLogger(__name__)


VOCAB_FILES_NAMES = {"vocab_file": "hy.tiktoken"}
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|""" \
          r"""[^\r\n\p{L}\p{N}]?\p{L}+|""" \
          r"""\p{N}|""" \
          r""" ?[^\s\p{L}\p{N}]+[\r\n]*|""" \
          r"""\s*[\r\n]+|""" \
          r"""\s+(?!\S)|""" \
          r"""\s+"""
# default eod_token and bod_token of our base model
ENDOFTEXT = "<|endoftext|>"
STARTOFTEXT = "<|startoftext|>"

# extra flag token for other training
BOSTOKEN = "<|bos|>"
EOSTOKEN = "<|eos|>"

PADTOKEN = "<|pad|>"

# extra special tokens for the tokenizer
# as the default behavior is changed to allow special tokens in
# regular texts, the surface forms of special tokens need to be
# as different as possible to minimize the impact
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(204)))

SPECIAL_START_ID = 127957


def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
    dic = {}
    rank = 0
    for i, line in enumerate(open(tiktoken_bpe_file, "rb")):
        if line:
            token, _ = line.split()
            # skip duplicated tokens, this should not happen
            if base64.b64decode(token) in dic:
                raise ValueError(f"!ERROR: duplicated token {token} in your vocab file")
            dic[base64.b64decode(token)] = int(rank)
            rank += 1
    return dic


# special tokens for pretrain and finetune models
SPECIAL_TOKENS = tuple(
    enumerate(
        (
            (
                ENDOFTEXT,
                STARTOFTEXT,
                BOSTOKEN,
                EOSTOKEN,
                PADTOKEN,
            )
            + EXTRAS
        ),
        start=SPECIAL_START_ID,
    )
)

SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)


class HYTokenizer(PreTrainedTokenizer):
    """
    HunYuan Tokenizer Initialization. We extend `tiktoken` vocab and
        the default EOD & BOD special tokens are used for base model.

    Args:
        vocab_file (`str`):
            Path to the vocabulary file.

        errors (`str`):
            How to handle errors in decoding UTF-8 byte sequences.
            use ignore if you are in streaming inference

        bod_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""<|startoftext|>""`):
            The beginning of document token that was used for training. can be modified by your task.
            default to be `<|startoftext|>` for released base model.

        eod_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""<|endoftext|>""`):
            The end of document token that was used for training. can be modified by your task.
            default to be `<|endoftext|>` for released base model.

        bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `None`):
            The start or sep special token that was used for some training tasks.
            default to be `<|startoftext|>` for released base model.
            It can be set to `<|bos|>` when you training for some other task

        eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `None`):
            The end or sep special token that was used for some training tasks.
            default to be `<|endoftext|>` for released base model.
            It can be set to `<|eos|>` when you training for some other task

        pad_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
            attention mechanisms or loss computation.

        special_vocab_file (str, *optional*):
            Customed special extra vocab file, same format with hy.tiktoken.
            **Be careful** to use the extra special vocab, it will may cause the model loading collapse.
            The data line be like:
                `PHxhYmN8Pg== 0`
            the id followed `base64.encode(str)` is unused, we will reset them in case of collision

        add_bod_token (`bool`, *optional*, defaults to `True`):
            Whether or not to add an `bos_token` at the start of documents.
            This will effect `build_inputs_with_special_tokens` method

        add_eod_token (`bool`, *optional*, defaults to `False`):
            Whether or not to add an `eos_token` at the end of documents.
            This will effect `build_inputs_with_special_tokens` method

    """
    vocab_files_names = VOCAB_FILES_NAMES

    def __init__(
        self,
        vocab_file,
        errors="replace",
        bod_token="<|startoftext|>",
        eod_token="<|endoftext|>",
        bos_token="<|startoftext|>",
        eos_token="<|endoftext|>",
        pad_token="<|pad|>",
        add_bod_token=True,
        add_eod_token=True,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.errors = errors
        self.mergeable_ranks = _load_tiktoken_bpe(vocab_file)  # type: Dict[bytes, int]
        self.special_tokens = {
            token: index
            for index, token in SPECIAL_TOKENS
        }

        enc = tiktoken.Encoding(
            "HunYuan",
            pat_str=PAT_STR,
            mergeable_ranks=self.mergeable_ranks,
            special_tokens=self.special_tokens,
        )
        assert (
            len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
        ), f"{len(self.mergeable_ranks)} + {len(self.special_tokens)} != {enc.n_vocab} in encoding"

        self.decoder = {
            v: k for k, v in self.mergeable_ranks.items()
        }  # type: dict[int, bytes|str]
        self.decoder.update({v: k for k, v in self.special_tokens.items()})

        self.tokenizer = enc

        self.bod_token, self.bod_id = bod_token, self.special_tokens[bod_token]
        self.eod_token, self.eod_id = eod_token, self.special_tokens[eod_token]
        self.bos_token, self.bos_id = bos_token, self.special_tokens[bos_token]
        self.eos_token, self.eos_id = eos_token, self.special_tokens[eos_token]
        self.pad_token, self.pad_id = pad_token, self.special_tokens[pad_token]

        self._num_special_token = len(self.special_tokens)

        self.add_bod_token = add_bod_token
        self.add_eod_token = add_eod_token

    def __getstate__(self):
        state = self.__dict__.copy()
        del state["tokenizer"]
        return state

    def __setstate__(self, state):
        self.__dict__.update(state)
        enc = tiktoken.Encoding(
            "HunYuan",
            pat_str=PAT_STR,
            mergeable_ranks=self.mergeable_ranks,
            special_tokens=self.special_tokens,
        )
        self.tokenizer = enc

    def __len__(self) -> int:
        return self.tokenizer.n_vocab

    def get_vocab(self) -> Dict[bytes, int]:
        """Return the vocabulary as a dictionary, without special tokens."""
        return self.mergeable_ranks

    def convert_tokens_to_ids(
        self, tokens: Union[bytes, str, List[Union[bytes, str]]]
    ) -> List[int]:
        ids = []
        if isinstance(tokens, (str, bytes)):
            if tokens in self.special_tokens:
                return self.special_tokens[tokens]
            else:
                return self.mergeable_ranks.get(tokens)
        for token in tokens:
            if token in self.special_tokens:
                ids.append(self.special_tokens[token])
            else:
                ids.append(self.mergeable_ranks.get(token))
        return ids

    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
        bod_token_id = [self.bod_id] if self.add_bod_token else []
        eod_token_id = [self.eod_id] if self.add_eod_token else []
        output = bod_token_id + token_ids_0 + eod_token_id
        if token_ids_1 is not None:
            output = output + bod_token_id + token_ids_1 + eod_token_id
        return output

    def _add_tokens(
        self,
        new_tokens: Union[List[str], List[AddedToken]],
        special_tokens: bool = False,
    ) -> List[Tuple[int, str]]:
        """do not support adding tokens"""
        if not special_tokens and new_tokens:
            raise ValueError("Adding regular tokens is not supported")
        for token in new_tokens:
            surface_form = token.content if isinstance(token, AddedToken) else token
            if surface_form not in SPECIAL_TOKENS_SET:
                raise ValueError("Adding unknown special tokens is not supported")
        return 0

    def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
        """
        Save only the vocabulary of the tokenizer (vocabulary).
        Returns:
            `Tuple(str)`: Paths to the files saved.
        """
        file_path = os.path.join(save_directory, "hy.tiktoken")
        with open(file_path, "w", encoding="utf8") as w:
            for k, v in self.mergeable_ranks.items():
                line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
                w.write(line)
        return (file_path,)

    def tokenize(
        self,
        text: str,
        allowed_special: Union[Set, str] = "all",
        disallowed_special: Union[Collection, str] = (),
        **kwargs,
    ) -> List[Union[bytes, str]]:
        """
        Converts a string in a sequence of tokens.
        Args:
            text (`str`):
                The sequence to be encoded.
            allowed_special (`Literal["all"]` or `set`):
                The surface forms of the tokens to be encoded as special tokens in regular texts.
                Default to "all".
            disallowed_special (`Literal["all"]` or `Collection`):
                The surface forms of the tokens that should not be in regular texts and trigger errors.
                Default to an empty tuple.
            kwargs (additional keyword arguments, *optional*):
                Will be passed to the underlying model specific encode method.
        Returns:
            `List[bytes|str]`: The list of tokens.
        """
        tokens = []
        text = unicodedata.normalize("NFC", text)

        # this implementation takes a detour: text -> token id -> token surface forms
        for t in self.tokenizer.encode(
            text, allowed_special=allowed_special, disallowed_special=disallowed_special
        ):
            tokens.append(self.decoder[t])
        return tokens

    def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
        """
        Converts a sequence of tokens in a single string.
        """
        text = ""
        temp = b""
        for t in tokens:
            if isinstance(t, str):
                if temp:
                    text += temp.decode("utf-8", errors=self.errors)
                    temp = b""
                text += t
            elif isinstance(t, bytes):
                temp += t
            else:
                raise TypeError("token should only be of type types or str")
        if temp:
            text += temp.decode("utf-8", errors=self.errors)
        return text

    @property
    def vocab_size(self):
        return self.tokenizer.n_vocab

    def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
        """Converts an id to a token, special tokens included"""
        if index in self.decoder:
            return self.decoder[index]
        raise ValueError("unknown ids")

    def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
        """Converts a token to an id using the vocab, special tokens included"""
        if token in self.special_tokens:
            return self.special_tokens[token]
        if token in self.mergeable_ranks:
            return self.mergeable_ranks[token]
        raise ValueError("unknown token")

    def _tokenize(self, text: str, **kwargs):
        """
        Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
        vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
        Do NOT take care of added tokens.
        """
        raise NotImplementedError

    def _decode(
        self,
        token_ids: Union[int, List[int]],
        skip_special_tokens: bool = False,
        errors: str = None,
        **kwargs,
    ) -> str:
        if isinstance(token_ids, int):
            token_ids = [token_ids]
        if skip_special_tokens:
            token_ids = [i for i in token_ids if i < self.eod_id]
        return self.tokenizer.decode(token_ids, errors=errors or self.errors)