File size: 5,301 Bytes
f8eac33
58777f0
f8eac33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e0b10
afdce43
4787274
94bf6f2
d3b1ef0
f8eac33
 
 
 
 
 
6f7b716
f8eac33
6f7b716
 
 
 
 
 
 
 
f8eac33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f7b716
 
 
 
 
 
 
 
 
 
 
 
 
 
f8eac33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7250ad
 
f8eac33
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
base_model: mistralai/Mistral-7B-v0.1
tags:
- mistral-7b
- instruct
- finetune
- gpt4
- synthetic data
- distillation
- sharegpt
datasets:
- CollectiveCognition/chats-data-2023-09-27
model-index:
- name: CollectiveCognition-v1-Mistral-7B
  results: []
license: apache-2.0
language:
- en
---

**Collective Cognition v1 - Mistral 7B**
<div style="display: flex; justify-content: center;">
  <a href="https://collectivecognition.ai" target="_blank" style="display: inline-block; text-align: center;">
    <img src="https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/DNZXsJE5oC_rM8eYY6H_x.png" alt="Collective Cognition Logo" width="50%" style="display: block; margin: 0 auto;">
  </a>
</div>

## Model Description:

Collective Cognition v1 is a Mistral model fine-tuned using just 100 GPT-4 chats shared on Collective Cognition.

## Special Features:
- **Quick Training**: This model was trained in just 3 minutes on a single 4090 with a qlora, and competes with 70B scale Llama-2 Models at TruthfulQA.
- **Limited Data**: Despite its exceptional performance, it was trained on only ONE HUNDRED data points, all of which were gathered from Collective Cognition, a platform reminiscent of ShareGPT.
- **Extreme TruthfulQA Benchmark**: The collective cognition models are competing strongly with top 70B models on the TruthfulQA benchmark despite the small dataset and qlora training!

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/-pnifxPcMeeUONyE3efo3.png)

## Acknowledgements:

Special thanks to @a16z and all contributors to the Collective Cognition dataset for making the development of this model possible.


## Dataset:

The model was trained using data from the Collective Cognition website. The efficacy of this dataset is demonstrated by the model's stellar performance, suggesting that further expansion of this dataset could yield even more promising results. The data is reminiscent of that collected from platforms like ShareGPT.

You can contribute to the growth of the dataset by sharing your own ChatGPT chats [here](https://CollectiveCognition.ai).

You can download the datasets created by Collective Cognition here: https://huggingface.co/CollectiveCognition

## Performance:

- **TruthfulQA**: Collective Cognition v1 and v1.1 in particular have notably outperformed several models on the TruthfulQA benchmark, highlighting its ability to understand and rectify common misconceptions.

The model follows a LIMA approach, by minimizing the base model's original training as little as possible and giving a small but very high quality dataset to enhance it's performance and style.

## Usage:

Prompt Format:
```
USER: <prompt>
ASSISTANT:
```
OR
```
<system message>
USER: <prompt>
ASSISTANT:
```

## Benchmarks:

Collective Cognition v1.0 TruthfulQA:
```
|    Task     |Version|Metric|Value |   |Stderr|
|-------------|------:|------|-----:|---|-----:|
|truthfulqa_mc|      1|mc1   |0.3794|±  |0.0170|
|             |       |mc2   |0.5394|±  |0.0158|
```

GPT4All Benchmark Suite:
```
Collective Cognition v1.0 GPT4All:
|    Task     |Version| Metric |Value |   |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge|      0|acc     |0.5401|±  |0.0146|
|             |       |acc_norm|0.5572|±  |0.0145|
|arc_easy     |      0|acc     |0.8102|±  |0.0080|
|             |       |acc_norm|0.7992|±  |0.0082|
|boolq        |      1|acc     |0.8538|±  |0.0062|
|hellaswag    |      0|acc     |0.6459|±  |0.0048|
|             |       |acc_norm|0.8297|±  |0.0038|
|openbookqa   |      0|acc     |0.3380|±  |0.0212|
|             |       |acc_norm|0.4360|±  |0.0222|
|piqa         |      0|acc     |0.8085|±  |0.0092|
|             |       |acc_norm|0.8232|±  |0.0089|
|winogrande   |      0|acc     |0.7451|±  |0.0122|
Average: 72.06%
```

AGIEval:
```
|             Task             |Version| Metric |Value |   |Stderr|
|------------------------------|------:|--------|-----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |0.1890|±  |0.0246|
|                              |       |acc_norm|0.2047|±  |0.0254|
|agieval_logiqa_en             |      0|acc     |0.2611|±  |0.0172|
|                              |       |acc_norm|0.3134|±  |0.0182|
|agieval_lsat_ar               |      0|acc     |0.2087|±  |0.0269|
|                              |       |acc_norm|0.2217|±  |0.0275|
|agieval_lsat_lr               |      0|acc     |0.3373|±  |0.0210|
|                              |       |acc_norm|0.3196|±  |0.0207|
|agieval_lsat_rc               |      0|acc     |0.4201|±  |0.0301|
|                              |       |acc_norm|0.3978|±  |0.0299|
|agieval_sat_en                |      0|acc     |0.5971|±  |0.0343|
|                              |       |acc_norm|0.5631|±  |0.0346|
|agieval_sat_en_without_passage|      0|acc     |0.4029|±  |0.0343|
|                              |       |acc_norm|0.3398|±  |0.0331|
|agieval_sat_math              |      0|acc     |0.3045|±  |0.0311|
|                              |       |acc_norm|0.2864|±  |0.0305|
Average: 33.08%
```  

Training run on wandb here: https://wandb.ai/teknium1/collectivecognition-mistral-7b/runs/collectivecognition-mistral-6/workspace


## Licensing:

Apache 2.0

---