File size: 1,103 Bytes
fc0bd26 505237c 7e8e86f fc0bd26 7e8e86f fc0bd26 2b5ba62 505237c 979d8c9 7e8e86f fc0bd26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
license: apache-2.0
language:
- fr
- en
- zh
widget:
- text: "<s> [|User|] Comment faire un bon plat ? </s>[|Assistant|]"
---
Merging stuff to make a potato. Idk about it, might delete later.
Merge of MiniMerlin via Task arithmetic using mergekit.
There was no goal except merging. Interest in the outcome tho. I might need to fine-tune it more.
FT on more french data (Merlin).
Je pense qu'il s'agit du meilleur model français en 3B. Essayez le.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
model = AutoModelForCausalLM.from_pretrained(
"teilomillet/Potato-3B",
revision="0.1",
return_dict=True,
torch_dtype=torch.bfloat16,
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained("teilomillet/Potato-3B")
tokenizer.pad_token = tokenizer.eos_token
text = "[|User|] Comment faire un bon plat ? </s>[|Assistant|]"
inputs = tokenizer(text, return_tensors="pt").to(0)
outputs = model.generate(**inputs, max_new_tokens=800)
print(tokenizer.decode(outputs[0], skip_special_tokens=False))
```
#merge |