SerbDict2vec |
|
Обучаван над корпусом српског језика Википедија, СрпКор2013 и део СрпКор2021 - 350 милиона речи |
Trained on the Serbian language corpus compiled from srWikipedia, SrpKor2013, and part of SrpKor2021 - 350 million words |
from gensim.models import KeyedVectors
# Load the vectors
d2v_vectors = KeyedVectors.load("D:/modeli/dict2vec/SerbDict2vec")
# Check word vector
print(d2v_vectors["klijent"])
[-3.1600e-01 -3.4110e+00 1.2158e+01 3.7950e+00 6.1200e-01 -3.1000e-01
-9.7000e-02 -5.0000e-02 -5.2000e-02 -9.4000e-01 3.5600e-01 -6.0400e-01
-2.3700e-01 1.1600e-01 -4.5500e-01 1.6100e-01 2.2500e-01 -6.4700e-01
5.4600e-01 -7.8000e-02 3.5500e-01 5.8000e-02 -3.0000e-02 3.3000e-01
-1.5700e-01 -5.9700e-01 1.5000e-02 1.9600e-01 1.0000e-03 1.5800e-01
4.3300e-01 -5.0000e-03 -3.0700e-01 -2.6000e-01 -5.2500e-01 7.4000e-02
-2.7000e-02 1.8800e-01 5.6000e-02 -2.5200e-01 3.0700e-01 -4.3000e-02
5.9000e-02 -6.6000e-02 -1.0000e-02 1.3900e-01 7.1000e-02 -4.2000e-02
-3.2000e-02 -1.3100e-01 1.4000e-02 -8.9000e-02 -3.2200e-01 -6.2000e-02
-1.0500e-01 1.0800e-01 1.6100e-01 -1.3600e-01 -1.5400e-01 4.0000e-02
-5.1000e-02 1.1000e-02 2.6600e-01 3.0000e-03 -1.3800e-01 2.3400e-01
-2.9300e-01 1.5500e-01 2.5600e-01 2.7200e-01 1.2600e-01 1.9000e-01
-7.2000e-02 7.3000e-02 1.1700e-01 -1.1100e-01 5.9000e-02 -2.1100e-01
-1.8700e-01 -2.0000e-03 -3.6000e-02 -2.0400e-01 3.1300e-01 1.1600e-01
1.4800e-01 1.3000e-02 2.5200e-01 1.9700e-01 -6.7000e-02 4.5000e-02
1.3100e-01 -8.0000e-03 5.9000e-02 3.0800e-01 -3.2200e-01 -5.3000e-02
-1.5500e-01 -2.2100e-01 -7.6000e-02 1.3600e-01]
# Find most similar words
print(d2v_vectors.most_similar("klijent", topn=5))
[('interfejs', 0.9971136450767517), ('mušterija', 0.996911883354187), ('provajder', 0.9968076348304749), ('sugrađanin', 0.9967014789581299), ('komšija', 0.9965119361877441)]
## Cit.
@inproceedings{stankovic-dict2vec,
author = {Ranka Stanković, Jovana Rađenović, Mihailo Škorić, Marko Putniković},
title = {Learning Word Embeddings using Lexical Resources and Corpora},
booktitle = {15th International Conference on Information Society and Technology, ISIST 2025, Kopaonik},
year = {2025},
address = {Kopaonik, Belgrade}
publisher = {SASA, Belgrade},
url = {https://doi.org/10.5281/zenodo.15093900}
}

Истраживање jе спроведено уз подршку Фонда за науку Републике Србиjе, #7276, Text Embeddings – Serbian Language Applications – TESLA |
This research was supported by the Science Fund of the Republic of Serbia, #7276, Text Embeddings - Serbian Language Applications - TESLA |
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no library tag.
Model tree for te-sla/SerbDict2vec
Base model
te-sla/Word2VecSr