Depth Estimation

Depth estimation is the task of predicting depth of the objects present in an image.

Depth Estimation Model

About Depth Estimation

Use Cases

Depth estimation models can be used to estimate the depth of different objects present in an image.

Estimation of Volumetric Information

Depth estimation models are widely used to study volumetric formation of objects present inside an image. This is an important use case in the domain of computer graphics.

3D Representation

Depth estimation models can also be used to develop a 3D representation from a 2D image.


With the transformers library, you can use the depth-estimation pipeline to infer with image classification models. You can initialize the pipeline with a model id from the Hub. If you do not provide a model id it will initialize with Intel/dpt-large by default. When calling the pipeline you just need to specify a path, http link or an image loaded in PIL. Additionally, you can find a comprehensive list of various depth estimation models at this link.

from transformers import pipeline

estimator = pipeline(task="depth-estimation", model="Intel/dpt-large")
result = estimator(images="http://images.cocodataset.org/val2017/000000039769.jpg")

# {'predicted_depth': tensor([[[ 6.3199,  6.3629,  6.4148,  ..., 10.4104, 10.5109, 10.3847],
#           [ 6.3850,  6.3615,  6.4166,  ..., 10.4540, 10.4384, 10.4554],
#           [ 6.3519,  6.3176,  6.3575,  ..., 10.4247, 10.4618, 10.4257],
#           ...,
#           [22.3772, 22.4624, 22.4227,  ..., 22.5207, 22.5593, 22.5293],
#           [22.5073, 22.5148, 22.5114,  ..., 22.6604, 22.6344, 22.5871],
#           [22.5176, 22.5275, 22.5218,  ..., 22.6282, 22.6216, 22.6108]]]),
#  'depth': <PIL.Image.Image image mode=L size=640x480 at 0x7F1A8BFE5D90>}

# You can visualize the result just by calling `result["depth"]`.

Useful Resources

Compatible libraries

Depth Estimation demo

No example widget is defined for this task.

Note Contribute by proposing a widget for this task !

Models for Depth Estimation
Browse Models (74)

Note Strong Depth Estimation model trained on 1.4 million images.

Note Strong Depth Estimation model trained on the KITTI dataset.

Datasets for Depth Estimation
Browse Datasets (11)

Note NYU Depth V2 Dataset: Video dataset containing both RGB and depth sensor data

Spaces using Depth Estimation

Note An application that predicts the depth of an image and then reconstruct the 3D model as voxels.

Note An application that can estimate the depth in a given image.

Metrics for Depth Estimation

No example metric is defined for this task.

Note Contribute by proposing a metric for this task !