roberta-large-go-emotions-2

This model is a fine-tuned version of roberta-large on the go_emotions dataset. It achieves the following results on the test set (with a threshold of 0.15):

  • Accuracy: 0.44020
  • Precision: 0.5041
  • Recall: 0.5461
  • F1: 0.5180

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 9

Training results

Training Loss Epoch Validation Loss Accuracy Precision Recall F1
No log 1.0 0.0889 0.4043 0.4807 0.4568 0.4446
0.1062 2.0 0.0828 0.4113 0.4608 0.5363 0.4868
0.1062 3.0 0.0813 0.4201 0.5198 0.5612 0.5227
No log 4.0 0.0862 0.4292 0.5012 0.5558 0.5208
0.0597 5.0 0.0924 0.4329 0.5164 0.5362 0.5151
0.0597 6.0 0.0956 0.4445 0.5241 0.5328 0.5161
No log 7.0 0.0962 0.4648 0.5138 0.5277 0.5151
0.0458 8.0 0.0962 0.4462 0.5257 0.5270 0.5203
0.0458 9.0 0.1029 0.4432 0.5076 0.5249 0.5111

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train tasinhoque/roberta-large-go-emotions-3

Evaluation results