checkpoints

This model is a fine-tuned version of mozilla/distilvit on an unknown dataset. It achieves the following results on the evaluation set:

  • Gen Len: 10.6487
  • Loss: 0.1739
  • Meteor: 0.4120
  • Rouge1: 50.0916
  • Rouge2: 24.7223
  • Rougel: 46.9416
  • Rougelsum: 46.9372

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 100
  • eval_batch_size: 100
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Gen Len Validation Loss Meteor Rouge1 Rouge2 Rougel Rougelsum
No log 0.3891 100 10.4163 0.1764 0.4117 50.0198 24.6331 46.9071 46.8907
No log 0.7782 200 10.6487 0.1739 0.4120 50.0916 24.7223 46.9416 46.9372

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
182M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.