File size: 3,527 Bytes
1b5712e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: EleutherAI/pythia-14m
model-index:
- name: 6cc0d0ea-35bf-40f0-bc75-67f500f02e10
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/pythia-14m
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
  - 277437aee072aff2_train_data.json
  ds_type: json
  format: custom
  path: 277437aee072aff2_train_data.json
  type:
    field: null
    field_input: null
    field_instruction: title
    field_output: text
    field_system: null
    format: null
    no_input_format: null
    system_format: '{system}'
    system_prompt: ''
early_stopping_patience: null
evals_per_epoch: 3
gradient_accumulation_steps: 1
group_by_length: false
hub_model_id: taopanda/6cc0d0ea-35bf-40f0-bc75-67f500f02e10
learning_rate: 1.0e-05
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: null
lora_target_modules:
- query_key_value
micro_batch_size: 4
num_epochs: 1
output_dir: ./outputs/lora-alpaca-pythia/taopanda-2_8dcf0032-e46f-4576-a8d2-bc4808352225
resume_from_checkpoint: null
seed: 20217
sequence_len: 512
special_tokens:
  pad_token: <|endoftext|>
tf32: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-2_8dcf0032-e46f-4576-a8d2-bc4808352225
wandb_project: subnet56
wandb_runid: taopanda-2_8dcf0032-e46f-4576-a8d2-bc4808352225
wandb_watch: null
weight_decay: 0.1

```

</details><br>

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/fatcat87-taopanda/subnet56/runs/52g80p2l)
# 6cc0d0ea-35bf-40f0-bc75-67f500f02e10

This model is a fine-tuned version of [EleutherAI/pythia-14m](https://huggingface.co/EleutherAI/pythia-14m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.3335

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 20217
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 5.2045        | 0.0000 | 1     | 5.5794          |
| 5.6734        | 0.3334 | 10407 | 5.2100          |
| 4.6502        | 0.6667 | 20814 | 5.3335          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1