File size: 5,249 Bytes
daad045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
license: llama3.2
base_model: tanliboy/llama-3.2-3b-sft-2
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: llama-3.2-3b-dpo-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama-3.2-3b-dpo-2

This model is a fine-tuned version of [tanliboy/llama-3.2-3b-sft-2](https://huggingface.co/tanliboy/llama-3.2-3b-sft-2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5808
- Rewards/chosen: 1.8125
- Rewards/rejected: -4.0822
- Rewards/accuracies: 0.7880
- Rewards/margins: 5.8947
- Logps/rejected: -387.3112
- Logps/chosen: -337.8669
- Logits/rejected: 0.2355
- Logits/chosen: 0.1785

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.7596        | 0.1741 | 100  | 0.7588          | 0.1349         | -1.4398          | 0.6994             | 1.5747          | -360.8871      | -354.6434    | 0.6135          | 0.5482        |
| 0.6725        | 0.3483 | 200  | 0.6680          | 0.6247         | -2.7323          | 0.7278             | 3.3569          | -373.8118      | -349.7451    | 0.5335          | 0.4718        |
| 0.6452        | 0.5224 | 300  | 0.6514          | 0.1770         | -3.8036          | 0.75               | 3.9807          | -384.5256      | -354.2216    | 0.5477          | 0.4866        |
| 0.6259        | 0.6966 | 400  | 0.6328          | 0.9885         | -3.5382          | 0.7722             | 4.5267          | -381.8713      | -346.1070    | 0.4531          | 0.3927        |
| 0.5709        | 0.8707 | 500  | 0.6219          | 0.9150         | -4.0091          | 0.7816             | 4.9242          | -386.5804      | -346.8415    | 0.4148          | 0.3563        |
| 0.5835        | 1.0448 | 600  | 0.6094          | 1.5034         | -3.6390          | 0.7722             | 5.1423          | -382.8790      | -340.9584    | 0.3504          | 0.2933        |
| 0.5571        | 1.2190 | 700  | 0.5992          | 1.5696         | -3.7206          | 0.7690             | 5.2901          | -383.6949      | -340.2962    | 0.3217          | 0.2649        |
| 0.5532        | 1.3931 | 800  | 0.5954          | 1.7147         | -3.7261          | 0.7785             | 5.4408          | -383.7506      | -338.8453    | 0.2961          | 0.2383        |
| 0.5168        | 1.5673 | 900  | 0.5930          | 1.9934         | -3.3982          | 0.7753             | 5.3916          | -380.4709      | -336.0577    | 0.2838          | 0.2266        |
| 0.5232        | 1.7414 | 1000 | 0.5884          | 1.7308         | -4.0024          | 0.7816             | 5.7332          | -386.5127      | -338.6839    | 0.2787          | 0.2220        |
| 0.5574        | 1.9155 | 1100 | 0.5849          | 1.8420         | -3.9351          | 0.7911             | 5.7771          | -385.8401      | -337.5714    | 0.2706          | 0.2134        |
| 0.5077        | 2.0897 | 1200 | 0.5842          | 1.6188         | -4.2472          | 0.7880             | 5.8659          | -388.9607      | -339.8043    | 0.2657          | 0.2083        |
| 0.4952        | 2.2638 | 1300 | 0.5837          | 1.9316         | -3.8913          | 0.7816             | 5.8229          | -385.4018      | -336.6759    | 0.2694          | 0.2115        |
| 0.5236        | 2.4380 | 1400 | 0.5812          | 1.8289         | -4.0636          | 0.7880             | 5.8925          | -387.1253      | -337.7025    | 0.2465          | 0.1895        |
| 0.5001        | 2.6121 | 1500 | 0.5814          | 1.7432         | -4.1735          | 0.7848             | 5.9167          | -388.2242      | -338.5596    | 0.2395          | 0.1826        |
| 0.5246        | 2.7862 | 1600 | 0.5809          | 1.8622         | -4.0120          | 0.7880             | 5.8742          | -386.6093      | -337.3701    | 0.2395          | 0.1825        |
| 0.5042        | 2.9604 | 1700 | 0.5808          | 1.8125         | -4.0822          | 0.7880             | 5.8947          | -387.3112      | -337.8669    | 0.2355          | 0.1785        |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1