fin_cate

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0523
  • Accuracy: 0.9794
  • F1: 0.9794
  • Precision: 0.9794
  • Recall: 0.9794

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 64 0.1458 0.9292 0.9292 0.9292 0.9292
No log 2.0 128 0.0591 0.9744 0.9744 0.9744 0.9744
No log 3.0 192 0.0488 0.9754 0.9754 0.9754 0.9754
No log 4.0 256 0.0487 0.9784 0.9788 0.9793 0.9784
No log 5.0 320 0.0500 0.9784 0.9784 0.9784 0.9784
No log 6.0 384 0.0506 0.9794 0.9794 0.9794 0.9794
No log 7.0 448 0.0523 0.9794 0.9794 0.9794 0.9794

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
142M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for tangminhanh/fin_cate

Finetuned
(120)
this model