metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: meat_calssify_fresh_crop_fixed_epoch100_V_0_8
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8481012658227848
meat_calssify_fresh_crop_fixed_epoch100_V_0_8
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5407
- Accuracy: 0.8481
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0983 | 1.0 | 10 | 1.0923 | 0.3861 |
1.0837 | 2.0 | 20 | 1.0603 | 0.4937 |
1.0593 | 3.0 | 30 | 1.0236 | 0.5633 |
1.0323 | 4.0 | 40 | 0.9905 | 0.5696 |
0.991 | 5.0 | 50 | 0.9442 | 0.5759 |
0.9535 | 6.0 | 60 | 0.9318 | 0.5506 |
0.8994 | 7.0 | 70 | 0.8444 | 0.6139 |
0.847 | 8.0 | 80 | 0.8550 | 0.6266 |
0.8083 | 9.0 | 90 | 0.8252 | 0.6456 |
0.7465 | 10.0 | 100 | 0.7622 | 0.6646 |
0.6872 | 11.0 | 110 | 0.7461 | 0.6329 |
0.6664 | 12.0 | 120 | 0.7210 | 0.6899 |
0.5655 | 13.0 | 130 | 0.6896 | 0.6962 |
0.5541 | 14.0 | 140 | 0.6891 | 0.6962 |
0.5162 | 15.0 | 150 | 0.6646 | 0.7468 |
0.531 | 16.0 | 160 | 0.6972 | 0.6962 |
0.4662 | 17.0 | 170 | 0.5651 | 0.7658 |
0.4806 | 18.0 | 180 | 0.7426 | 0.6709 |
0.405 | 19.0 | 190 | 0.6764 | 0.7089 |
0.3897 | 20.0 | 200 | 0.5832 | 0.7658 |
0.327 | 21.0 | 210 | 0.5591 | 0.7532 |
0.3542 | 22.0 | 220 | 0.6793 | 0.7278 |
0.3309 | 23.0 | 230 | 0.5890 | 0.7532 |
0.3384 | 24.0 | 240 | 0.5595 | 0.7722 |
0.2867 | 25.0 | 250 | 0.5669 | 0.7975 |
0.2651 | 26.0 | 260 | 0.6369 | 0.7468 |
0.2659 | 27.0 | 270 | 0.7925 | 0.6709 |
0.3057 | 28.0 | 280 | 0.7006 | 0.7405 |
0.2606 | 29.0 | 290 | 0.5800 | 0.7658 |
0.2145 | 30.0 | 300 | 0.4187 | 0.8418 |
0.1951 | 31.0 | 310 | 0.7022 | 0.7342 |
0.2658 | 32.0 | 320 | 0.6902 | 0.7342 |
0.2329 | 33.0 | 330 | 0.5709 | 0.7595 |
0.1807 | 34.0 | 340 | 0.5226 | 0.7911 |
0.1602 | 35.0 | 350 | 0.5418 | 0.7911 |
0.2104 | 36.0 | 360 | 0.6453 | 0.7658 |
0.2009 | 37.0 | 370 | 0.4814 | 0.8291 |
0.2059 | 38.0 | 380 | 0.6135 | 0.7595 |
0.2203 | 39.0 | 390 | 0.5581 | 0.7785 |
0.1864 | 40.0 | 400 | 0.5939 | 0.7911 |
0.1564 | 41.0 | 410 | 0.6002 | 0.7848 |
0.1229 | 42.0 | 420 | 0.6470 | 0.7658 |
0.1867 | 43.0 | 430 | 0.6545 | 0.7975 |
0.1679 | 44.0 | 440 | 0.6079 | 0.7658 |
0.1752 | 45.0 | 450 | 0.6666 | 0.7468 |
0.1256 | 46.0 | 460 | 0.6651 | 0.7595 |
0.188 | 47.0 | 470 | 0.6574 | 0.7532 |
0.1695 | 48.0 | 480 | 0.5883 | 0.7975 |
0.1797 | 49.0 | 490 | 0.7344 | 0.7595 |
0.1913 | 50.0 | 500 | 0.5662 | 0.8101 |
0.1483 | 51.0 | 510 | 0.5385 | 0.8038 |
0.1502 | 52.0 | 520 | 0.5101 | 0.8165 |
0.1142 | 53.0 | 530 | 0.5263 | 0.8228 |
0.0839 | 54.0 | 540 | 0.4852 | 0.8038 |
0.1432 | 55.0 | 550 | 0.5651 | 0.8101 |
0.1327 | 56.0 | 560 | 0.6218 | 0.7911 |
0.0948 | 57.0 | 570 | 0.6101 | 0.7722 |
0.1387 | 58.0 | 580 | 0.5350 | 0.8101 |
0.0957 | 59.0 | 590 | 0.7503 | 0.7722 |
0.1243 | 60.0 | 600 | 0.5468 | 0.7911 |
0.1179 | 61.0 | 610 | 0.5851 | 0.8038 |
0.128 | 62.0 | 620 | 0.5167 | 0.8291 |
0.1018 | 63.0 | 630 | 0.5119 | 0.8481 |
0.0987 | 64.0 | 640 | 0.6415 | 0.7911 |
0.0901 | 65.0 | 650 | 0.6031 | 0.8038 |
0.1457 | 66.0 | 660 | 0.6773 | 0.7848 |
0.1247 | 67.0 | 670 | 0.5563 | 0.7975 |
0.127 | 68.0 | 680 | 0.7763 | 0.7595 |
0.0841 | 69.0 | 690 | 0.4934 | 0.8544 |
0.0914 | 70.0 | 700 | 0.6510 | 0.8228 |
0.0982 | 71.0 | 710 | 0.5742 | 0.8101 |
0.0945 | 72.0 | 720 | 0.4954 | 0.8481 |
0.077 | 73.0 | 730 | 0.6194 | 0.8101 |
0.0936 | 74.0 | 740 | 0.5301 | 0.8228 |
0.0641 | 75.0 | 750 | 0.5673 | 0.8165 |
0.0646 | 76.0 | 760 | 0.5055 | 0.8291 |
0.0794 | 77.0 | 770 | 0.5444 | 0.8228 |
0.0774 | 78.0 | 780 | 0.5511 | 0.8228 |
0.0674 | 79.0 | 790 | 0.5688 | 0.8354 |
0.0731 | 80.0 | 800 | 0.5594 | 0.8291 |
0.0839 | 81.0 | 810 | 0.6970 | 0.7785 |
0.0857 | 82.0 | 820 | 0.5651 | 0.7975 |
0.0729 | 83.0 | 830 | 0.7003 | 0.7848 |
0.074 | 84.0 | 840 | 0.5293 | 0.8165 |
0.0505 | 85.0 | 850 | 0.5051 | 0.8544 |
0.0669 | 86.0 | 860 | 0.6459 | 0.8101 |
0.0614 | 87.0 | 870 | 0.5474 | 0.8291 |
0.0659 | 88.0 | 880 | 0.4981 | 0.8291 |
0.0702 | 89.0 | 890 | 0.5611 | 0.8291 |
0.0635 | 90.0 | 900 | 0.6273 | 0.7975 |
0.0698 | 91.0 | 910 | 0.4314 | 0.8734 |
0.0671 | 92.0 | 920 | 0.5471 | 0.8291 |
0.057 | 93.0 | 930 | 0.4922 | 0.8481 |
0.0563 | 94.0 | 940 | 0.5463 | 0.8418 |
0.0638 | 95.0 | 950 | 0.5177 | 0.8291 |
0.0545 | 96.0 | 960 | 0.6183 | 0.8038 |
0.0534 | 97.0 | 970 | 0.5460 | 0.8165 |
0.0655 | 98.0 | 980 | 0.4196 | 0.8861 |
0.0775 | 99.0 | 990 | 0.5088 | 0.8354 |
0.0519 | 100.0 | 1000 | 0.5407 | 0.8481 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1