talli96123 commited on
Commit
55489d4
1 Parent(s): 0a5b357

End of training

Browse files
README.md ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: meat_calssify_fresh_crop_fixed_epoch100_V_0_8
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8481012658227848
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # meat_calssify_fresh_crop_fixed_epoch100_V_0_8
32
+
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5407
36
+ - Accuracy: 0.8481
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 64
57
+ - eval_batch_size: 1
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 100
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 1.0983 | 1.0 | 10 | 1.0923 | 0.3861 |
69
+ | 1.0837 | 2.0 | 20 | 1.0603 | 0.4937 |
70
+ | 1.0593 | 3.0 | 30 | 1.0236 | 0.5633 |
71
+ | 1.0323 | 4.0 | 40 | 0.9905 | 0.5696 |
72
+ | 0.991 | 5.0 | 50 | 0.9442 | 0.5759 |
73
+ | 0.9535 | 6.0 | 60 | 0.9318 | 0.5506 |
74
+ | 0.8994 | 7.0 | 70 | 0.8444 | 0.6139 |
75
+ | 0.847 | 8.0 | 80 | 0.8550 | 0.6266 |
76
+ | 0.8083 | 9.0 | 90 | 0.8252 | 0.6456 |
77
+ | 0.7465 | 10.0 | 100 | 0.7622 | 0.6646 |
78
+ | 0.6872 | 11.0 | 110 | 0.7461 | 0.6329 |
79
+ | 0.6664 | 12.0 | 120 | 0.7210 | 0.6899 |
80
+ | 0.5655 | 13.0 | 130 | 0.6896 | 0.6962 |
81
+ | 0.5541 | 14.0 | 140 | 0.6891 | 0.6962 |
82
+ | 0.5162 | 15.0 | 150 | 0.6646 | 0.7468 |
83
+ | 0.531 | 16.0 | 160 | 0.6972 | 0.6962 |
84
+ | 0.4662 | 17.0 | 170 | 0.5651 | 0.7658 |
85
+ | 0.4806 | 18.0 | 180 | 0.7426 | 0.6709 |
86
+ | 0.405 | 19.0 | 190 | 0.6764 | 0.7089 |
87
+ | 0.3897 | 20.0 | 200 | 0.5832 | 0.7658 |
88
+ | 0.327 | 21.0 | 210 | 0.5591 | 0.7532 |
89
+ | 0.3542 | 22.0 | 220 | 0.6793 | 0.7278 |
90
+ | 0.3309 | 23.0 | 230 | 0.5890 | 0.7532 |
91
+ | 0.3384 | 24.0 | 240 | 0.5595 | 0.7722 |
92
+ | 0.2867 | 25.0 | 250 | 0.5669 | 0.7975 |
93
+ | 0.2651 | 26.0 | 260 | 0.6369 | 0.7468 |
94
+ | 0.2659 | 27.0 | 270 | 0.7925 | 0.6709 |
95
+ | 0.3057 | 28.0 | 280 | 0.7006 | 0.7405 |
96
+ | 0.2606 | 29.0 | 290 | 0.5800 | 0.7658 |
97
+ | 0.2145 | 30.0 | 300 | 0.4187 | 0.8418 |
98
+ | 0.1951 | 31.0 | 310 | 0.7022 | 0.7342 |
99
+ | 0.2658 | 32.0 | 320 | 0.6902 | 0.7342 |
100
+ | 0.2329 | 33.0 | 330 | 0.5709 | 0.7595 |
101
+ | 0.1807 | 34.0 | 340 | 0.5226 | 0.7911 |
102
+ | 0.1602 | 35.0 | 350 | 0.5418 | 0.7911 |
103
+ | 0.2104 | 36.0 | 360 | 0.6453 | 0.7658 |
104
+ | 0.2009 | 37.0 | 370 | 0.4814 | 0.8291 |
105
+ | 0.2059 | 38.0 | 380 | 0.6135 | 0.7595 |
106
+ | 0.2203 | 39.0 | 390 | 0.5581 | 0.7785 |
107
+ | 0.1864 | 40.0 | 400 | 0.5939 | 0.7911 |
108
+ | 0.1564 | 41.0 | 410 | 0.6002 | 0.7848 |
109
+ | 0.1229 | 42.0 | 420 | 0.6470 | 0.7658 |
110
+ | 0.1867 | 43.0 | 430 | 0.6545 | 0.7975 |
111
+ | 0.1679 | 44.0 | 440 | 0.6079 | 0.7658 |
112
+ | 0.1752 | 45.0 | 450 | 0.6666 | 0.7468 |
113
+ | 0.1256 | 46.0 | 460 | 0.6651 | 0.7595 |
114
+ | 0.188 | 47.0 | 470 | 0.6574 | 0.7532 |
115
+ | 0.1695 | 48.0 | 480 | 0.5883 | 0.7975 |
116
+ | 0.1797 | 49.0 | 490 | 0.7344 | 0.7595 |
117
+ | 0.1913 | 50.0 | 500 | 0.5662 | 0.8101 |
118
+ | 0.1483 | 51.0 | 510 | 0.5385 | 0.8038 |
119
+ | 0.1502 | 52.0 | 520 | 0.5101 | 0.8165 |
120
+ | 0.1142 | 53.0 | 530 | 0.5263 | 0.8228 |
121
+ | 0.0839 | 54.0 | 540 | 0.4852 | 0.8038 |
122
+ | 0.1432 | 55.0 | 550 | 0.5651 | 0.8101 |
123
+ | 0.1327 | 56.0 | 560 | 0.6218 | 0.7911 |
124
+ | 0.0948 | 57.0 | 570 | 0.6101 | 0.7722 |
125
+ | 0.1387 | 58.0 | 580 | 0.5350 | 0.8101 |
126
+ | 0.0957 | 59.0 | 590 | 0.7503 | 0.7722 |
127
+ | 0.1243 | 60.0 | 600 | 0.5468 | 0.7911 |
128
+ | 0.1179 | 61.0 | 610 | 0.5851 | 0.8038 |
129
+ | 0.128 | 62.0 | 620 | 0.5167 | 0.8291 |
130
+ | 0.1018 | 63.0 | 630 | 0.5119 | 0.8481 |
131
+ | 0.0987 | 64.0 | 640 | 0.6415 | 0.7911 |
132
+ | 0.0901 | 65.0 | 650 | 0.6031 | 0.8038 |
133
+ | 0.1457 | 66.0 | 660 | 0.6773 | 0.7848 |
134
+ | 0.1247 | 67.0 | 670 | 0.5563 | 0.7975 |
135
+ | 0.127 | 68.0 | 680 | 0.7763 | 0.7595 |
136
+ | 0.0841 | 69.0 | 690 | 0.4934 | 0.8544 |
137
+ | 0.0914 | 70.0 | 700 | 0.6510 | 0.8228 |
138
+ | 0.0982 | 71.0 | 710 | 0.5742 | 0.8101 |
139
+ | 0.0945 | 72.0 | 720 | 0.4954 | 0.8481 |
140
+ | 0.077 | 73.0 | 730 | 0.6194 | 0.8101 |
141
+ | 0.0936 | 74.0 | 740 | 0.5301 | 0.8228 |
142
+ | 0.0641 | 75.0 | 750 | 0.5673 | 0.8165 |
143
+ | 0.0646 | 76.0 | 760 | 0.5055 | 0.8291 |
144
+ | 0.0794 | 77.0 | 770 | 0.5444 | 0.8228 |
145
+ | 0.0774 | 78.0 | 780 | 0.5511 | 0.8228 |
146
+ | 0.0674 | 79.0 | 790 | 0.5688 | 0.8354 |
147
+ | 0.0731 | 80.0 | 800 | 0.5594 | 0.8291 |
148
+ | 0.0839 | 81.0 | 810 | 0.6970 | 0.7785 |
149
+ | 0.0857 | 82.0 | 820 | 0.5651 | 0.7975 |
150
+ | 0.0729 | 83.0 | 830 | 0.7003 | 0.7848 |
151
+ | 0.074 | 84.0 | 840 | 0.5293 | 0.8165 |
152
+ | 0.0505 | 85.0 | 850 | 0.5051 | 0.8544 |
153
+ | 0.0669 | 86.0 | 860 | 0.6459 | 0.8101 |
154
+ | 0.0614 | 87.0 | 870 | 0.5474 | 0.8291 |
155
+ | 0.0659 | 88.0 | 880 | 0.4981 | 0.8291 |
156
+ | 0.0702 | 89.0 | 890 | 0.5611 | 0.8291 |
157
+ | 0.0635 | 90.0 | 900 | 0.6273 | 0.7975 |
158
+ | 0.0698 | 91.0 | 910 | 0.4314 | 0.8734 |
159
+ | 0.0671 | 92.0 | 920 | 0.5471 | 0.8291 |
160
+ | 0.057 | 93.0 | 930 | 0.4922 | 0.8481 |
161
+ | 0.0563 | 94.0 | 940 | 0.5463 | 0.8418 |
162
+ | 0.0638 | 95.0 | 950 | 0.5177 | 0.8291 |
163
+ | 0.0545 | 96.0 | 960 | 0.6183 | 0.8038 |
164
+ | 0.0534 | 97.0 | 970 | 0.5460 | 0.8165 |
165
+ | 0.0655 | 98.0 | 980 | 0.4196 | 0.8861 |
166
+ | 0.0775 | 99.0 | 990 | 0.5088 | 0.8354 |
167
+ | 0.0519 | 100.0 | 1000 | 0.5407 | 0.8481 |
168
+
169
+
170
+ ### Framework versions
171
+
172
+ - Transformers 4.41.2
173
+ - Pytorch 2.3.1
174
+ - Datasets 2.20.0
175
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/vit-base-patch16-224-in21k",
3
+ "architectures": [
4
+ "ViTForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "encoder_stride": 16,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "fresh1",
13
+ "1": "fresh2",
14
+ "2": "fresh3"
15
+ },
16
+ "image_size": 224,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 3072,
19
+ "label2id": {
20
+ "fresh1": "0",
21
+ "fresh2": "1",
22
+ "fresh3": "2"
23
+ },
24
+ "layer_norm_eps": 1e-12,
25
+ "model_type": "vit",
26
+ "num_attention_heads": 12,
27
+ "num_channels": 3,
28
+ "num_hidden_layers": 12,
29
+ "patch_size": 16,
30
+ "problem_type": "single_label_classification",
31
+ "qkv_bias": true,
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.41.2"
34
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1eeb4b37ef5ac5651006cb307e0a88a5f7d78392000a5f06d0639abace7894e8
3
+ size 343227052
preprocessor_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "do_rescale",
8
+ "rescale_factor",
9
+ "do_normalize",
10
+ "image_mean",
11
+ "image_std",
12
+ "return_tensors",
13
+ "data_format",
14
+ "input_data_format"
15
+ ],
16
+ "do_normalize": true,
17
+ "do_rescale": true,
18
+ "do_resize": true,
19
+ "image_mean": [
20
+ 0.5,
21
+ 0.5,
22
+ 0.5
23
+ ],
24
+ "image_processor_type": "ViTImageProcessor",
25
+ "image_std": [
26
+ 0.5,
27
+ 0.5,
28
+ 0.5
29
+ ],
30
+ "resample": 2,
31
+ "rescale_factor": 0.00392156862745098,
32
+ "size": {
33
+ "height": 224,
34
+ "width": 224
35
+ }
36
+ }
runs/Jun16_15-46-35_DESKTOP-QA5IM1O/events.out.tfevents.1718523996.DESKTOP-QA5IM1O.17380.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22e3fd5a803ff03935ef7645cebee7246b4a4d0a88ac3ead12daba875aa3bcd7
3
+ size 58570
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59642d48a8662a24e07cae61eb1cf390a95b0b5661eaad04597dc50707b1d957
3
+ size 5176