File size: 2,028 Bytes
96c6007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9697c9
96c6007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9697c9
 
96c6007
 
d9697c9
96c6007
 
 
71bf354
96c6007
 
 
 
 
d9697c9
 
 
 
 
 
 
 
 
 
96c6007
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224-in22k
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: swin-base-patch4-window7-224-in22k-Kontur-competition-1.3K
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-base-patch4-window7-224-in22k-Kontur-competition-1.3K

This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0036

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0593        | 0.99  | 55   | 0.0294          |
| 0.0098        | 1.99  | 111  | 0.0315          |
| 0.0066        | 3.0   | 167  | 0.0322          |
| 0.0179        | 4.0   | 223  | 0.0068          |
| 0.0078        | 4.99  | 278  | 0.0033          |
| 0.0015        | 5.99  | 334  | 0.0008          |
| 0.0017        | 7.0   | 390  | 0.0078          |
| 0.0008        | 8.0   | 446  | 0.0027          |
| 0.0019        | 8.99  | 501  | 0.0011          |
| 0.0014        | 9.87  | 550  | 0.0036          |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2