File size: 7,253 Bytes
f36dfc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# coding=utf-8
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LongLLaMA model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
LONGLLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"syzymon/long_llama_3b": "https://huggingface.co/syzymon/long_llama_3b/resolve/main/config.json",
}
class LongLlamaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LongLlamaModel`]. It is used to instantiate an LongLLaMA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the LongLLaMA-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the LongLLaMA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`LongLlamaModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
mem_layers (`List[int]`, defaults to `[]`):
Layers with memory
mem_positionals (`bool`, *optional*, defaults to `True`):
Whether to use positional embeddings in memory layers
mem_dtype (`str`, *optional*, defaults to `"bfloat16"`):
Type for keys and values stored in memory
mem_attention_grouping (`Tuple[int, int]`, *optional*, defaults to `None`):
One can trade speed for memory by performing attention
in memory layers sequentially.
When equal to `(4, 2048)` the memory layers will process at most 4 heads and 2048 queries from each head at once.
That is at most 4*2048 queries at once.
torch_attention (`bool`, *optional*, defaults to `False`):
Whether to use torch scaled_dot_product_attention
gradient_checkpoint_every_ith (`int`, *optional*, defaults to `1`):
When gradient checkpointing is enabled checkpoint every ith layer
Example:
```python
>>> from transformers import LongLlamaModel, LongLlamaConfig
>>> # Initializing a LongLLaMA longllama-7b style configuration
>>> configuration = LongLlamaConfig()
>>> # Initializing a model from the longllama-7b style configuration
>>> model = LongLlamaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "longllama"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
last_context_length=1024,
mem_layers=[],
mem_positionals=True,
mem_dtype="bfloat16",
mem_attention_grouping=None,
torch_attention=False,
gradient_checkpoint_every_ith=1,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.last_context_length = last_context_length
self.mem_layers = mem_layers
self.mem_positionals = mem_positionals
self.mem_dtype = mem_dtype
self.mem_attention_grouping = mem_attention_grouping
self.torch_attention = torch_attention
self.gradient_checkpoint_every_ith = gradient_checkpoint_every_ith
self._rope_scaling_validation()
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is not None:
raise ValueError("LongLLaMA does not use rope_scaling")
|