py313-pylingual-v1-segmenter

This model is a fine-tuned version of syssec-utd/py313-pylingual-v1-mlm on the syssec-utd/segmentation-py313-pylingual-v1-tokenized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0068
  • Precision: 0.9847
  • Recall: 0.9874
  • F1: 0.9861
  • Accuracy: 0.9966

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 48
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0076 1.0 88290 0.0051 0.9919 0.9883 0.9901 0.9977
0.0042 2.0 176580 0.0068 0.9847 0.9874 0.9861 0.9966

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.21.0
Downloads last month
4,078
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for syssec-utd/py313-pylingual-v1-segmenter

Finetuned
(1)
this model