File size: 3,985 Bytes
1e1b4b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
model-index:
- name: cheater-7b
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
  - path: ./julia/data.jsonl
    type: sharegpt
    conversation: chatml
dataset_prepared_path: ./julia/prepared_data
chat_template: chatml
val_set_size: 0.05
output_dir: ./julia/lora-out
hub_model_id: animmina/cheater-7b
hub_strategy: every_save
hf_use_auth_token: true

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: cheater-7b
wandb_entity:
wandb_watch:
wandb_name: v02
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00003

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "<|im_end|>"
  unk_token: "<unk>"

```

</details><br>

# cheater-7b

This model is a fine-tuned version of [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5741

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.554         | 0.04  | 1    | 0.6521          |
| 0.4152        | 0.26  | 7    | 0.6499          |
| 0.3984        | 0.52  | 14   | 0.6283          |
| 0.4133        | 0.78  | 21   | 0.6140          |
| 0.3772        | 1.04  | 28   | 0.5951          |
| 0.3855        | 1.22  | 35   | 0.5869          |
| 0.4077        | 1.48  | 42   | 0.5840          |
| 0.3104        | 1.74  | 49   | 0.5793          |
| 0.3345        | 2.0   | 56   | 0.5776          |
| 0.3207        | 2.19  | 63   | 0.5761          |
| 0.3679        | 2.44  | 70   | 0.5784          |
| 0.3593        | 2.7   | 77   | 0.5781          |
| 0.2391        | 2.96  | 84   | 0.5761          |
| 0.3329        | 3.15  | 91   | 0.5743          |
| 0.2636        | 3.41  | 98   | 0.5744          |
| 0.3114        | 3.67  | 105  | 0.5741          |


### Framework versions

- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0