Edit model card
YAML Metadata Error: "datasets[0]" with value "Wikipedia (Hindi, Sanskrit, Gujarati)" is not valid. If possible, use a dataset id from https://hf.co/datasets.

RoBERTa-hindi-guj-san

Model description

Multillingual RoBERTa like model trained on Wikipedia articles of Hindi, Sanskrit, Gujarati languages. The tokenizer was trained on combined text. However, Hindi text was used to pre-train the model and then it was fine-tuned on Sanskrit and Gujarati Text combined hoping that pre-training with Hindi will help the model learn similar languages.

Configuration

Parameter Value
hidden_size 768
num_attention_heads 12
num_hidden_layers 6
vocab_size 30522
model_type roberta

Intended uses & limitations

How to use

# Example usage
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline

tokenizer = AutoTokenizer.from_pretrained("surajp/RoBERTa-hindi-guj-san")
model = AutoModelWithLMHead.from_pretrained("surajp/RoBERTa-hindi-guj-san")

fill_mask = pipeline(
    "fill-mask",
    model=model,
    tokenizer=tokenizer
)

# Sanskrit: इयं भाषा न केवलं भारतस्य अपि तु विश्वस्य प्राचीनतमा भाषा इति मन्यते।
# Hindi:  अगर आप अब अभ्यास नहीं करते हो तो आप अपने परीक्षा में मूर्खतापूर्ण गलतियाँ करोगे।
# Gujarati: ગુજરાતમાં ૧૯મી માર્ચ સુધી કોઈ સકારાત્મક (પોઝીટીવ) રીપોર્ટ આવ્યો <mask> હતો.
fill_mask("ગુજરાતમાં ૧૯મી માર્ચ સુધી કોઈ સકારાત્મક (પોઝીટીવ) રીપોર્ટ આવ્યો <mask> હતો.")

'''
Output:
--------
[
{'score': 0.07849744707345963, 'sequence': '<s> ગુજરાતમાં ૧૯મી માર્ચ સુધી કોઈ સકારાત્મક (પોઝીટીવ) રીપોર્ટ આવ્યો જ હતો.</s>', 'token': 390},
{'score': 0.06273336708545685, 'sequence': '<s> ગુજરાતમાં ૧૯મી માર્ચ સુધી કોઈ સકારાત્મક (પોઝીટીવ) રીપોર્ટ આવ્યો ન હતો.</s>', 'token': 478},
{'score': 0.05160355195403099, 'sequence': '<s> ગુજરાતમાં ૧૯મી માર્ચ સુધી કોઈ સકારાત્મક (પોઝીટીવ) રીપોર્ટ આવ્યો થઇ હતો.</s>', 'token': 2075},
{'score': 0.04751499369740486, 'sequence': '<s> ગુજરાતમાં ૧૯મી માર્ચ સુધી કોઈ સકારાત્મક (પોઝીટીવ) રીપોર્ટ આવ્યો એક હતો.</s>', 'token': 600},
{'score': 0.03788900747895241, 'sequence': '<s> ગુજરાતમાં ૧૯મી માર્ચ સુધી કોઈ સકારાત્મક (પોઝીટીવ) રીપોર્ટ આવ્યો પણ હતો.</s>', 'token': 840}
]

Training data

Cleaned wikipedia articles in Hindi, Sanskrit and Gujarati on Kaggle. It contains training as well as evaluation text. Used in iNLTK

Training procedure

  • On TPU (using xla_spawn.py)
  • For language modelling
  • Iteratively increasing --block_size from 128 to 256 over epochs
  • Tokenizer trained on combined text
  • Pre-training with Hindi and fine-tuning on Sanskrit and Gujarati texts
--model_type distillroberta-base \
--model_name_or_path "/content/SanHiGujBERTa" \
--mlm_probability 0.20 \
--line_by_line \
--save_total_limit 2 \
--per_device_train_batch_size 128 \
--per_device_eval_batch_size 128 \
--num_train_epochs 5 \
--block_size 256 \
--seed 108 \
--overwrite_output_dir \

Eval results

perplexity = 2.920005983224673

Created by Suraj Parmar/@parmarsuraj99 | LinkedIn

Made with in India

Downloads last month
13
Safetensors
Model size
67.6M params
Tensor type
F32
·
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using surajp/RoBERTa-hindi-guj-san 1