Files changed (2) hide show
  1. README.md +11 -23
  2. config.json +1 -1
README.md CHANGED
@@ -16,13 +16,13 @@ language:
16
  thumbnail: >-
17
  https://user-images.githubusercontent.com/5068315/230698495-cbb1ced9-c911-4c9a-941d-a1a4a1286ac6.png
18
  library: bark
19
- license: mit
20
  tags:
21
  - bark
22
  - audio
23
  - text-to-speech
24
  pipeline_tag: text-to-speech
25
- inference: true
26
  ---
27
 
28
  # Bark
@@ -69,35 +69,23 @@ Try out Bark yourself!
69
 
70
  ## πŸ€— Transformers Usage
71
 
 
72
  You can run Bark locally with the πŸ€— Transformers library from version 4.31.0 onwards.
73
 
74
- 1. First install the πŸ€— [Transformers library](https://github.com/huggingface/transformers) and scipy:
75
 
76
  ```
77
- pip install --upgrade pip
78
- pip install --upgrade transformers scipy
79
- ```
80
-
81
- 2. Run inference via the `Text-to-Speech` (TTS) pipeline. You can infer the bark model via the TTS pipeline in just a few lines of code!
82
-
83
- ```python
84
- from transformers import pipeline
85
- import scipy
86
-
87
- synthesiser = pipeline("text-to-speech", "suno/bark")
88
-
89
- speech = synthesiser("Hello, my dog is cooler than you!", forward_params={"do_sample": True})
90
-
91
- scipy.io.wavfile.write("bark_out.wav", rate=speech["sampling_rate"], data=speech["audio"])
92
  ```
93
 
94
- 3. Run inference via the Transformers modelling code. You can use the processor + generate code to convert text into a mono 24 kHz speech waveform for more fine-grained control.
95
 
96
  ```python
97
  from transformers import AutoProcessor, AutoModel
98
 
99
- processor = AutoProcessor.from_pretrained("suno/bark")
100
- model = AutoModel.from_pretrained("suno/bark")
 
101
 
102
  inputs = processor(
103
  text=["Hello, my name is Suno. And, uh β€” and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."],
@@ -107,7 +95,7 @@ inputs = processor(
107
  speech_values = model.generate(**inputs, do_sample=True)
108
  ```
109
 
110
- 4. Listen to the speech samples either in an ipynb notebook:
111
 
112
  ```python
113
  from IPython.display import Audio
@@ -133,7 +121,7 @@ You can also run Bark locally through the original [Bark library]((https://githu
133
 
134
  1. First install the [`bark` library](https://github.com/suno-ai/bark)
135
 
136
- 2. Run the following Python code:
137
 
138
  ```python
139
  from bark import SAMPLE_RATE, generate_audio, preload_models
 
16
  thumbnail: >-
17
  https://user-images.githubusercontent.com/5068315/230698495-cbb1ced9-c911-4c9a-941d-a1a4a1286ac6.png
18
  library: bark
19
+ license: cc-by-nc-4.0
20
  tags:
21
  - bark
22
  - audio
23
  - text-to-speech
24
  pipeline_tag: text-to-speech
25
+ inference: false
26
  ---
27
 
28
  # Bark
 
69
 
70
  ## πŸ€— Transformers Usage
71
 
72
+
73
  You can run Bark locally with the πŸ€— Transformers library from version 4.31.0 onwards.
74
 
75
+ 1. First install the πŸ€— [Transformers library](https://github.com/huggingface/transformers) from main:
76
 
77
  ```
78
+ pip install git+https://github.com/huggingface/transformers.git
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  ```
80
 
81
+ 2. Run the following Python code to generate speech samples:
82
 
83
  ```python
84
  from transformers import AutoProcessor, AutoModel
85
 
86
+
87
+ processor = AutoProcessor.from_pretrained("suno/bark-small")
88
+ model = AutoModel.from_pretrained("suno/bark-small")
89
 
90
  inputs = processor(
91
  text=["Hello, my name is Suno. And, uh β€” and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."],
 
95
  speech_values = model.generate(**inputs, do_sample=True)
96
  ```
97
 
98
+ 3. Listen to the speech samples either in an ipynb notebook:
99
 
100
  ```python
101
  from IPython.display import Audio
 
121
 
122
  1. First install the [`bark` library](https://github.com/suno-ai/bark)
123
 
124
+ 3. Run the following Python code:
125
 
126
  ```python
127
  from bark import SAMPLE_RATE, generate_audio, preload_models
config.json CHANGED
@@ -80,7 +80,7 @@
80
  "use_cache": true
81
  },
82
  "codec_config": {
83
- "_name_or_path": "facebook/encodec_24khz",
84
  "add_cross_attention": false,
85
  "architectures": [
86
  "EncodecModel"
 
80
  "use_cache": true
81
  },
82
  "codec_config": {
83
+ "_name_or_path": "ArthurZ/encodec_24khz",
84
  "add_cross_attention": false,
85
  "architectures": [
86
  "EncodecModel"