XLM-RoBERTa-CERED2
This model is a fine-tuned version of xlm-roberta-large on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.7446
- Accuracy: 0.9110
- Micro Precision: 0.9110
- Micro Recall: 0.9110
- Micro F1: 0.9110
- Macro Precision: 0.8893
- Macro Recall: 0.8770
- Macro F1: 0.8811
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 |
---|---|---|---|---|---|---|---|---|---|---|
0.4246 | 1.0000 | 11305 | 0.3776 | 0.8833 | 0.8833 | 0.8833 | 0.8833 | 0.8622 | 0.8284 | 0.8348 |
0.3405 | 2.0 | 22611 | 0.3563 | 0.8961 | 0.8961 | 0.8961 | 0.8961 | 0.8697 | 0.8513 | 0.8531 |
0.2425 | 3.0000 | 33916 | 0.3564 | 0.9023 | 0.9023 | 0.9023 | 0.9023 | 0.8772 | 0.8558 | 0.8612 |
0.1848 | 4.0 | 45222 | 0.3728 | 0.9106 | 0.9106 | 0.9106 | 0.9106 | 0.8898 | 0.8704 | 0.8760 |
0.1417 | 5.0000 | 56527 | 0.4166 | 0.9085 | 0.9085 | 0.9085 | 0.9085 | 0.8765 | 0.8745 | 0.8723 |
0.1072 | 6.0 | 67833 | 0.4911 | 0.9080 | 0.9080 | 0.9080 | 0.9080 | 0.8787 | 0.8729 | 0.8717 |
0.0745 | 7.0000 | 79138 | 0.5872 | 0.9079 | 0.9079 | 0.9079 | 0.9079 | 0.8759 | 0.8748 | 0.8715 |
0.0522 | 8.0 | 90444 | 0.6573 | 0.9086 | 0.9086 | 0.9086 | 0.9086 | 0.8801 | 0.8795 | 0.8765 |
0.0323 | 9.0000 | 101749 | 0.7126 | 0.9107 | 0.9107 | 0.9107 | 0.9107 | 0.8810 | 0.8795 | 0.8768 |
0.0237 | 9.9996 | 113050 | 0.7395 | 0.9109 | 0.9109 | 0.9109 | 0.9109 | 0.8806 | 0.8822 | 0.8779 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for stulcrad/XLM-RoBERTa-CERED2
Base model
FacebookAI/xlm-roberta-large