XLM-RoBERTa-1

This model is a fine-tuned version of xlm-roberta-large on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5007
  • Accuracy: 0.9041
  • Micro Precision: 0.9041
  • Micro Recall: 0.9041
  • Micro F1: 0.9041
  • Macro Precision: 0.8819
  • Macro Recall: 0.8521
  • Macro F1: 0.8591

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 24
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Micro Precision Micro Recall Micro F1 Macro Precision Macro Recall Macro F1
0.3225 1.0000 40166 0.3876 0.8890 0.8890 0.8890 0.8890 0.8594 0.8201 0.8281
0.2321 2.0 80333 0.3982 0.9012 0.9012 0.9012 0.9012 0.8733 0.8474 0.8539
0.1621 3.0000 120499 0.4288 0.9059 0.9059 0.9059 0.9059 0.8739 0.8575 0.8587
0.118 4.0000 160664 0.4707 0.9094 0.9094 0.9094 0.9094 0.8761 0.8634 0.8646

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
4
Safetensors
Model size
560M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for stulcrad/XLM-RoBERTa-CERED1

Finetuned
(396)
this model