XLM-RoBERTa-1
This model is a fine-tuned version of xlm-roberta-large on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.5007
- Accuracy: 0.9041
- Micro Precision: 0.9041
- Micro Recall: 0.9041
- Micro F1: 0.9041
- Macro Precision: 0.8819
- Macro Recall: 0.8521
- Macro F1: 0.8591
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 |
---|---|---|---|---|---|---|---|---|---|---|
0.3225 | 1.0000 | 40166 | 0.3876 | 0.8890 | 0.8890 | 0.8890 | 0.8890 | 0.8594 | 0.8201 | 0.8281 |
0.2321 | 2.0 | 80333 | 0.3982 | 0.9012 | 0.9012 | 0.9012 | 0.9012 | 0.8733 | 0.8474 | 0.8539 |
0.1621 | 3.0000 | 120499 | 0.4288 | 0.9059 | 0.9059 | 0.9059 | 0.9059 | 0.8739 | 0.8575 | 0.8587 |
0.118 | 4.0000 | 160664 | 0.4707 | 0.9094 | 0.9094 | 0.9094 | 0.9094 | 0.8761 | 0.8634 | 0.8646 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for stulcrad/XLM-RoBERTa-CERED1
Base model
FacebookAI/xlm-roberta-large