File size: 2,697 Bytes
139d41e
f61fbea
 
139d41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddde7ce
139d41e
 
 
 
6bb36cc
139d41e
 
6bb36cc
139d41e
 
6bb36cc
139d41e
 
6bb36cc
139d41e
 
 
 
 
 
 
f61fbea
139d41e
6bb36cc
 
 
 
 
139d41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bb36cc
d72c962
 
139d41e
 
 
f61fbea
969470b
6bb36cc
139d41e
 
 
4eca7d5
 
6bb36cc
 
 
 
 
 
 
139d41e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- cnec
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC2_0_Supertypes_xlm-roberta-large
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: cnec
      type: cnec
      config: default
      split: test
      args: default
    metrics:
    - name: Precision
      type: precision
      value: 0.8282633808240277
    - name: Recall
      type: recall
      value: 0.8837304847986853
    - name: F1
      type: f1
      value: 0.8550983899821109
    - name: Accuracy
      type: accuracy
      value: 0.9664021317268146
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CNEC2_0_Supertypes_xlm-roberta-large

This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1865
- Precision: 0.8283
- Recall: 0.8837
- F1: 0.8551
- Accuracy: 0.9664

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 500
- num_epochs: 16

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.6852        | 2.22  | 500  | 0.1614          | 0.7278    | 0.8250 | 0.7733 | 0.9574   |
| 0.1311        | 4.44  | 1000 | 0.1716          | 0.7690    | 0.8591 | 0.8116 | 0.9596   |
| 0.0882        | 6.67  | 1500 | 0.1785          | 0.7616    | 0.8714 | 0.8128 | 0.9613   |
| 0.062         | 8.89  | 2000 | 0.1536          | 0.8212    | 0.8928 | 0.8555 | 0.9669   |
| 0.0457        | 11.11 | 2500 | 0.1783          | 0.8204    | 0.8673 | 0.8432 | 0.9645   |
| 0.0353        | 13.33 | 3000 | 0.1829          | 0.8259    | 0.8809 | 0.8525 | 0.9655   |
| 0.0289        | 15.56 | 3500 | 0.1865          | 0.8283    | 0.8837 | 0.8551 | 0.9664   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0