Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -73,34 +73,21 @@ The following hyperparameters were used during training:
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
-
| Training Loss | Epoch | Step
|
81 |
-
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.0432 | 11.11 | 5000 | 0.1833 | 0.8231 | 0.8822 | 0.8516 | 0.9669 |
|
92 |
-
| 0.0381 | 12.22 | 5500 | 0.2097 | 0.8062 | 0.8634 | 0.8338 | 0.9659 |
|
93 |
-
| 0.0328 | 13.33 | 6000 | 0.2043 | 0.8026 | 0.8711 | 0.8355 | 0.9661 |
|
94 |
-
| 0.0292 | 14.44 | 6500 | 0.2217 | 0.8255 | 0.8769 | 0.8505 | 0.9669 |
|
95 |
-
| 0.0247 | 15.56 | 7000 | 0.2411 | 0.8297 | 0.8745 | 0.8515 | 0.9667 |
|
96 |
-
| 0.0206 | 16.67 | 7500 | 0.2425 | 0.8255 | 0.8764 | 0.8502 | 0.9663 |
|
97 |
-
| 0.0184 | 17.78 | 8000 | 0.2405 | 0.8329 | 0.8586 | 0.8455 | 0.9668 |
|
98 |
-
| 0.0157 | 18.89 | 8500 | 0.2521 | 0.8314 | 0.8832 | 0.8565 | 0.9677 |
|
99 |
-
| 0.0134 | 20.0 | 9000 | 0.2504 | 0.8349 | 0.8764 | 0.8552 | 0.9671 |
|
100 |
-
| 0.0116 | 21.11 | 9500 | 0.2570 | 0.8344 | 0.8779 | 0.8556 | 0.9678 |
|
101 |
-
| 0.0109 | 22.22 | 10000 | 0.2570 | 0.8320 | 0.8793 | 0.8550 | 0.9677 |
|
102 |
-
| 0.0093 | 23.33 | 10500 | 0.2639 | 0.8373 | 0.8793 | 0.8578 | 0.9674 |
|
103 |
-
| 0.0086 | 24.44 | 11000 | 0.2674 | 0.8427 | 0.8793 | 0.8607 | 0.9672 |
|
104 |
|
105 |
|
106 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8280399274047187
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8807915057915058
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8536014967259121
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9694915254237289
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1664
|
48 |
+
- Precision: 0.8280
|
49 |
+
- Recall: 0.8808
|
50 |
+
- F1: 0.8536
|
51 |
+
- Accuracy: 0.9695
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 10
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.3183 | 1.11 | 500 | 0.1528 | 0.6999 | 0.7934 | 0.7437 | 0.9583 |
|
83 |
+
| 0.144 | 2.22 | 1000 | 0.1302 | 0.7521 | 0.8639 | 0.8041 | 0.9648 |
|
84 |
+
| 0.1015 | 3.33 | 1500 | 0.1431 | 0.8003 | 0.8721 | 0.8346 | 0.9678 |
|
85 |
+
| 0.0807 | 4.44 | 2000 | 0.1355 | 0.7840 | 0.8740 | 0.8266 | 0.9680 |
|
86 |
+
| 0.066 | 5.56 | 2500 | 0.1413 | 0.8196 | 0.8793 | 0.8484 | 0.9691 |
|
87 |
+
| 0.0492 | 6.67 | 3000 | 0.1461 | 0.8132 | 0.8803 | 0.8454 | 0.9700 |
|
88 |
+
| 0.0401 | 7.78 | 3500 | 0.1577 | 0.8229 | 0.8769 | 0.8491 | 0.9690 |
|
89 |
+
| 0.0312 | 8.89 | 4000 | 0.1637 | 0.8242 | 0.8822 | 0.8522 | 0.9700 |
|
90 |
+
| 0.0265 | 10.0 | 4500 | 0.1664 | 0.8280 | 0.8808 | 0.8536 | 0.9695 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
|
93 |
### Framework versions
|