metadata
license: mit
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: microsoft/Phi-3-mini-4k-instruct
model-index:
- name: isafpr-phi3-lora
results: []
See axolotl config
axolotl version: 0.4.1
base_model: microsoft/Phi-3-mini-4k-instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: phi_3
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: data/isaf_press_releases_ft.jsonl
conversation: alpaca
type: sharegpt
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/phi3/lora-out
hub_model_id: strickvl/isafpr-phi3-lora
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: isaf_pr_ft
wandb_entity: strickvl
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_torch
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 5.0e-6
train_on_inputs: false
group_by_length: false
bf16: auto
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: True
early_stopping_patience: 3
logging_steps: 1
flash_attention: true
eval_steps: 1000
save_steps: 5000
eval_table_size: 2
eval_batch_size: 2
eval_sample_packing: false
eval_max_new_tokens: 32
eval_causal_lm_metrics: ["perplexity"]
do_causal_lm_eval: true
warmup_ratio: 0.2
debug: true
weight_decay: 0.1
resize_token_embeddings_to_32x: true
isafpr-phi3-lora
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.2970
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 53
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.0334 | 0.0038 | 1 | 3.2970 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1