mkt3's picture
Add models
2110e9c
|
raw
history blame
5.34 kB
---
language: ja
tags:
- ja
- japanese
- bart
- lm
- nlp
license: mit
---
# bart-base-japanese-news(base-sized model)
This repository provides a Japanese BART model. The model was trained by [Stockmark Inc.](https://stockmark.co.jp)
## Model description
BART is a transformer encoder-decoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text.
BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering).
## Intended uses & limitations
You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset.
# How to use the model
*NOTE:* Use `trust_remote_code=True` to initiate the tokenizer.
## Simple use
```python
from transformers import AutoTokenizer, BartModel
model_name = "stockmark/bart-base-japanese-news"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = BartModel.from_pretrained(model_name)
inputs = tokenizer("今日は良い天気です。", return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
```
## Sentence Permutation
```python
import torch
from transformers import AutoTokenizer, BartForConditionalGeneration
model_name = "stockmark/bart-base-japanese-news"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = BartForConditionalGeneration.from_pretrained(model_name)
if torch.cuda.is_available():
model = model.to("cuda")
# correct order text is "明日は大雨です。電車は止まる可能性があります。ですから、自宅から働きます。"
text = "電車は止まる可能性があります。ですから、自宅から働きます。明日は大雨です。"
inputs = tokenizer([text], max_length=128, return_tensors="pt", truncation=True)
text_ids = model.generate(inputs["input_ids"].to(model.device), num_beams=3, max_length=128)
output = tokenizer.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(output)
# sample output: 明日は大雨です。電車は止まる可能性があります。ですから、自宅から働きます。
```
## Mask filing
```python
import torch
from transformers import AutoTokenizer, BartForConditionalGeneration
model_name = "stockmark/bart-base-japanese-news"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = BartForConditionalGeneration.from_pretrained(model_name)
if torch.cuda.is_available():
model = model.to("cuda")
text = "今日の天気は<mask>のため、傘が必要でしょう。"
inputs = tokenizer([text], max_length=128, return_tensors="pt", truncation=True)
text_ids = model.generate(inputs["input_ids"].to(model.device), num_beams=3, max_length=128)
output = tokenizer.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(output)
# sample output: 今日の天気は、雨のため、傘が必要でしょう。
```
## Text generation
*NOTE:* You can use the raw model for text generation. However, the model is mostly meant to be fine-tuned on a supervised dataset.
```python
import torch
from transformers import AutoTokenizer, BartForConditionalGeneration
model_name = "stockmark/bart-base-japanese-news"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = BartForConditionalGeneration.from_pretrained(model_name)
if torch.cuda.is_available():
model = model.to("cuda")
text = "自然言語処理(しぜんげんごしょり、略称:NLP)は、人間が日常的に使っている自然言語をコンピュータに処理させる一連の技術であり、人工知能と言語学の一分野である。「計算言語学」(computational linguistics)との類似もあるが、自然言語処理は工学的な視点からの言語処理をさすのに対して、計算言語学は言語学的視点を重視する手法をさす事が多い。"
inputs = tokenizer([text], max_length=512, return_tensors="pt", truncation=True)
text_ids = model.generate(inputs["input_ids"].to(model.device), num_beams=3, min_length=0, max_length=40)
output = tokenizer.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(output)
# sample output: 自然言語処理(しぜんげんごしょり、略称:NLP)は、人間が日常的に使っている自然言語をコンピュータに処理させる一連の技術であり、言語学の一分野である。
```
# Training
The model was trained on Japanese News Articles.
# Tokenization
The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. The vocabulary was first trained on a selected subset from the training data using the official sentencepiece training script.
# Licenses
The pretrained models are distributed under the terms of the [MIT License](https://opensource.org/licenses/mit-license.php).
# Acknowledgement
This comparison study supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).