stefan-it's picture
readme: add initial version
8af5d35
|
raw
history blame
4.68 kB
metadata
language: en
license: mit
tags:
  - flair
  - token-classification
  - sequence-tagger-model
base_model: hmteams/teams-base-historic-multilingual-discriminator
widget:
  - text: >-
      On Wednesday , a public dinner was given by the Conservative Burgesses of
      Leads , to the Conservative members of the Leeds Town Council , in the
      Music Hall , Albion-street , which was very numerously attended .

Fine-tuned Flair Model on TopRes19th English NER Dataset (HIPE-2022)

This Flair model was fine-tuned on the TopRes19th English NER Dataset using hmTEAMS as backbone LM.

The TopRes19th dataset consists of NE-annotated historical English newspaper articles from 19C.

The following NEs were annotated: BUILDING, LOC and STREET.

Results

We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:

  • Batch Sizes: [8, 4]
  • Learning Rates: [3e-05, 5e-05]

And report micro F1-score on development set:

Configuration Run 1 Run 2 Run 3 Run 4 Run 5 Avg.
bs8-e10-lr3e-05 0.8089 0.8137 0.8083 0.8145 0.8082 81.07 ± 0.28
bs4-e10-lr3e-05 0.8068 0.8008 0.8195 0.8086 0.8049 80.81 ± 0.63
bs8-e10-lr5e-05 0.818 0.795 0.7992 0.804 0.7938 80.2 ± 0.88
bs4-e10-lr5e-05 0.8109 0.8114 0.7951 0.7901 0.795 80.05 ± 0.89

The training log and TensorBoard logs (only for hmByT5 and hmTEAMS based models) are also uploaded to the model hub.

More information about fine-tuning can be found here.

Acknowledgements

We thank Luisa März, Katharina Schmid and Erion Çano for their fruitful discussions about Historic Language Models.

Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC). Many Thanks for providing access to the TPUs ❤️