stefan-it's picture
Upload ./training.log with huggingface_hub
3725154
2023-10-25 11:23:45,120 ----------------------------------------------------------------------------------------------------
2023-10-25 11:23:45,121 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(64001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=13, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-25 11:23:45,122 ----------------------------------------------------------------------------------------------------
2023-10-25 11:23:45,122 MultiCorpus: 6183 train + 680 dev + 2113 test sentences
- NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator
2023-10-25 11:23:45,122 ----------------------------------------------------------------------------------------------------
2023-10-25 11:23:45,122 Train: 6183 sentences
2023-10-25 11:23:45,122 (train_with_dev=False, train_with_test=False)
2023-10-25 11:23:45,122 ----------------------------------------------------------------------------------------------------
2023-10-25 11:23:45,122 Training Params:
2023-10-25 11:23:45,122 - learning_rate: "3e-05"
2023-10-25 11:23:45,122 - mini_batch_size: "8"
2023-10-25 11:23:45,122 - max_epochs: "10"
2023-10-25 11:23:45,122 - shuffle: "True"
2023-10-25 11:23:45,122 ----------------------------------------------------------------------------------------------------
2023-10-25 11:23:45,122 Plugins:
2023-10-25 11:23:45,122 - TensorboardLogger
2023-10-25 11:23:45,123 - LinearScheduler | warmup_fraction: '0.1'
2023-10-25 11:23:45,123 ----------------------------------------------------------------------------------------------------
2023-10-25 11:23:45,123 Final evaluation on model from best epoch (best-model.pt)
2023-10-25 11:23:45,123 - metric: "('micro avg', 'f1-score')"
2023-10-25 11:23:45,123 ----------------------------------------------------------------------------------------------------
2023-10-25 11:23:45,123 Computation:
2023-10-25 11:23:45,123 - compute on device: cuda:0
2023-10-25 11:23:45,123 - embedding storage: none
2023-10-25 11:23:45,123 ----------------------------------------------------------------------------------------------------
2023-10-25 11:23:45,123 Model training base path: "hmbench-topres19th/en-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-25 11:23:45,123 ----------------------------------------------------------------------------------------------------
2023-10-25 11:23:45,123 ----------------------------------------------------------------------------------------------------
2023-10-25 11:23:45,123 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-25 11:23:50,075 epoch 1 - iter 77/773 - loss 1.91678480 - time (sec): 4.95 - samples/sec: 2874.84 - lr: 0.000003 - momentum: 0.000000
2023-10-25 11:23:54,493 epoch 1 - iter 154/773 - loss 1.15435044 - time (sec): 9.37 - samples/sec: 2781.06 - lr: 0.000006 - momentum: 0.000000
2023-10-25 11:23:58,988 epoch 1 - iter 231/773 - loss 0.83774526 - time (sec): 13.86 - samples/sec: 2790.82 - lr: 0.000009 - momentum: 0.000000
2023-10-25 11:24:03,379 epoch 1 - iter 308/773 - loss 0.66749755 - time (sec): 18.26 - samples/sec: 2784.22 - lr: 0.000012 - momentum: 0.000000
2023-10-25 11:24:08,082 epoch 1 - iter 385/773 - loss 0.56093101 - time (sec): 22.96 - samples/sec: 2754.85 - lr: 0.000015 - momentum: 0.000000
2023-10-25 11:24:12,562 epoch 1 - iter 462/773 - loss 0.49653847 - time (sec): 27.44 - samples/sec: 2714.10 - lr: 0.000018 - momentum: 0.000000
2023-10-25 11:24:16,898 epoch 1 - iter 539/773 - loss 0.44368224 - time (sec): 31.77 - samples/sec: 2725.13 - lr: 0.000021 - momentum: 0.000000
2023-10-25 11:24:21,264 epoch 1 - iter 616/773 - loss 0.39898395 - time (sec): 36.14 - samples/sec: 2742.88 - lr: 0.000024 - momentum: 0.000000
2023-10-25 11:24:25,543 epoch 1 - iter 693/773 - loss 0.36556811 - time (sec): 40.42 - samples/sec: 2757.54 - lr: 0.000027 - momentum: 0.000000
2023-10-25 11:24:29,876 epoch 1 - iter 770/773 - loss 0.33864681 - time (sec): 44.75 - samples/sec: 2765.28 - lr: 0.000030 - momentum: 0.000000
2023-10-25 11:24:30,037 ----------------------------------------------------------------------------------------------------
2023-10-25 11:24:30,038 EPOCH 1 done: loss 0.3377 - lr: 0.000030
2023-10-25 11:24:33,102 DEV : loss 0.06016210466623306 - f1-score (micro avg) 0.7285
2023-10-25 11:24:33,119 saving best model
2023-10-25 11:24:33,572 ----------------------------------------------------------------------------------------------------
2023-10-25 11:24:37,785 epoch 2 - iter 77/773 - loss 0.07630160 - time (sec): 4.21 - samples/sec: 2796.95 - lr: 0.000030 - momentum: 0.000000
2023-10-25 11:24:42,099 epoch 2 - iter 154/773 - loss 0.07590975 - time (sec): 8.53 - samples/sec: 2887.65 - lr: 0.000029 - momentum: 0.000000
2023-10-25 11:24:46,938 epoch 2 - iter 231/773 - loss 0.07648601 - time (sec): 13.36 - samples/sec: 2844.76 - lr: 0.000029 - momentum: 0.000000
2023-10-25 11:24:51,715 epoch 2 - iter 308/773 - loss 0.07250012 - time (sec): 18.14 - samples/sec: 2818.90 - lr: 0.000029 - momentum: 0.000000
2023-10-25 11:24:56,017 epoch 2 - iter 385/773 - loss 0.07287862 - time (sec): 22.44 - samples/sec: 2828.12 - lr: 0.000028 - momentum: 0.000000
2023-10-25 11:25:00,268 epoch 2 - iter 462/773 - loss 0.07298913 - time (sec): 26.69 - samples/sec: 2806.41 - lr: 0.000028 - momentum: 0.000000
2023-10-25 11:25:04,535 epoch 2 - iter 539/773 - loss 0.07213277 - time (sec): 30.96 - samples/sec: 2808.25 - lr: 0.000028 - momentum: 0.000000
2023-10-25 11:25:08,906 epoch 2 - iter 616/773 - loss 0.07150224 - time (sec): 35.33 - samples/sec: 2817.08 - lr: 0.000027 - momentum: 0.000000
2023-10-25 11:25:13,090 epoch 2 - iter 693/773 - loss 0.07238655 - time (sec): 39.52 - samples/sec: 2815.06 - lr: 0.000027 - momentum: 0.000000
2023-10-25 11:25:17,354 epoch 2 - iter 770/773 - loss 0.07180071 - time (sec): 43.78 - samples/sec: 2826.40 - lr: 0.000027 - momentum: 0.000000
2023-10-25 11:25:17,537 ----------------------------------------------------------------------------------------------------
2023-10-25 11:25:17,537 EPOCH 2 done: loss 0.0717 - lr: 0.000027
2023-10-25 11:25:20,202 DEV : loss 0.04841422662138939 - f1-score (micro avg) 0.7897
2023-10-25 11:25:20,220 saving best model
2023-10-25 11:25:20,869 ----------------------------------------------------------------------------------------------------
2023-10-25 11:25:25,415 epoch 3 - iter 77/773 - loss 0.03585561 - time (sec): 4.54 - samples/sec: 2729.38 - lr: 0.000026 - momentum: 0.000000
2023-10-25 11:25:30,524 epoch 3 - iter 154/773 - loss 0.03611039 - time (sec): 9.65 - samples/sec: 2571.24 - lr: 0.000026 - momentum: 0.000000
2023-10-25 11:25:35,189 epoch 3 - iter 231/773 - loss 0.03766398 - time (sec): 14.32 - samples/sec: 2687.59 - lr: 0.000026 - momentum: 0.000000
2023-10-25 11:25:39,730 epoch 3 - iter 308/773 - loss 0.03782797 - time (sec): 18.86 - samples/sec: 2690.26 - lr: 0.000025 - momentum: 0.000000
2023-10-25 11:25:44,174 epoch 3 - iter 385/773 - loss 0.04228608 - time (sec): 23.30 - samples/sec: 2675.69 - lr: 0.000025 - momentum: 0.000000
2023-10-25 11:25:48,714 epoch 3 - iter 462/773 - loss 0.04114786 - time (sec): 27.84 - samples/sec: 2637.81 - lr: 0.000025 - momentum: 0.000000
2023-10-25 11:25:53,418 epoch 3 - iter 539/773 - loss 0.04108091 - time (sec): 32.54 - samples/sec: 2655.14 - lr: 0.000024 - momentum: 0.000000
2023-10-25 11:25:57,981 epoch 3 - iter 616/773 - loss 0.04075527 - time (sec): 37.11 - samples/sec: 2660.94 - lr: 0.000024 - momentum: 0.000000
2023-10-25 11:26:02,262 epoch 3 - iter 693/773 - loss 0.04114755 - time (sec): 41.39 - samples/sec: 2689.33 - lr: 0.000024 - momentum: 0.000000
2023-10-25 11:26:06,577 epoch 3 - iter 770/773 - loss 0.04149795 - time (sec): 45.70 - samples/sec: 2712.34 - lr: 0.000023 - momentum: 0.000000
2023-10-25 11:26:06,737 ----------------------------------------------------------------------------------------------------
2023-10-25 11:26:06,738 EPOCH 3 done: loss 0.0414 - lr: 0.000023
2023-10-25 11:26:09,120 DEV : loss 0.07111605256795883 - f1-score (micro avg) 0.7925
2023-10-25 11:26:09,138 saving best model
2023-10-25 11:26:09,841 ----------------------------------------------------------------------------------------------------
2023-10-25 11:26:14,547 epoch 4 - iter 77/773 - loss 0.01773509 - time (sec): 4.70 - samples/sec: 2731.17 - lr: 0.000023 - momentum: 0.000000
2023-10-25 11:26:19,254 epoch 4 - iter 154/773 - loss 0.02615240 - time (sec): 9.41 - samples/sec: 2734.92 - lr: 0.000023 - momentum: 0.000000
2023-10-25 11:26:23,788 epoch 4 - iter 231/773 - loss 0.02603226 - time (sec): 13.95 - samples/sec: 2756.74 - lr: 0.000022 - momentum: 0.000000
2023-10-25 11:26:28,325 epoch 4 - iter 308/773 - loss 0.02587723 - time (sec): 18.48 - samples/sec: 2747.31 - lr: 0.000022 - momentum: 0.000000
2023-10-25 11:26:32,834 epoch 4 - iter 385/773 - loss 0.02487878 - time (sec): 22.99 - samples/sec: 2755.18 - lr: 0.000022 - momentum: 0.000000
2023-10-25 11:26:37,187 epoch 4 - iter 462/773 - loss 0.02646341 - time (sec): 27.34 - samples/sec: 2773.65 - lr: 0.000021 - momentum: 0.000000
2023-10-25 11:26:41,447 epoch 4 - iter 539/773 - loss 0.02772075 - time (sec): 31.60 - samples/sec: 2769.18 - lr: 0.000021 - momentum: 0.000000
2023-10-25 11:26:45,981 epoch 4 - iter 616/773 - loss 0.02778736 - time (sec): 36.14 - samples/sec: 2743.29 - lr: 0.000021 - momentum: 0.000000
2023-10-25 11:26:50,560 epoch 4 - iter 693/773 - loss 0.02887018 - time (sec): 40.72 - samples/sec: 2717.05 - lr: 0.000020 - momentum: 0.000000
2023-10-25 11:26:55,041 epoch 4 - iter 770/773 - loss 0.02903954 - time (sec): 45.20 - samples/sec: 2737.37 - lr: 0.000020 - momentum: 0.000000
2023-10-25 11:26:55,221 ----------------------------------------------------------------------------------------------------
2023-10-25 11:26:55,222 EPOCH 4 done: loss 0.0291 - lr: 0.000020
2023-10-25 11:26:57,921 DEV : loss 0.08298607915639877 - f1-score (micro avg) 0.7716
2023-10-25 11:26:57,937 ----------------------------------------------------------------------------------------------------
2023-10-25 11:27:02,328 epoch 5 - iter 77/773 - loss 0.02702620 - time (sec): 4.39 - samples/sec: 2672.32 - lr: 0.000020 - momentum: 0.000000
2023-10-25 11:27:06,657 epoch 5 - iter 154/773 - loss 0.02292715 - time (sec): 8.72 - samples/sec: 2750.18 - lr: 0.000019 - momentum: 0.000000
2023-10-25 11:27:11,263 epoch 5 - iter 231/773 - loss 0.02016044 - time (sec): 13.32 - samples/sec: 2754.22 - lr: 0.000019 - momentum: 0.000000
2023-10-25 11:27:15,785 epoch 5 - iter 308/773 - loss 0.02010956 - time (sec): 17.85 - samples/sec: 2752.40 - lr: 0.000019 - momentum: 0.000000
2023-10-25 11:27:20,238 epoch 5 - iter 385/773 - loss 0.02039984 - time (sec): 22.30 - samples/sec: 2718.24 - lr: 0.000018 - momentum: 0.000000
2023-10-25 11:27:24,677 epoch 5 - iter 462/773 - loss 0.02190141 - time (sec): 26.74 - samples/sec: 2745.65 - lr: 0.000018 - momentum: 0.000000
2023-10-25 11:27:28,819 epoch 5 - iter 539/773 - loss 0.02138656 - time (sec): 30.88 - samples/sec: 2776.01 - lr: 0.000018 - momentum: 0.000000
2023-10-25 11:27:32,991 epoch 5 - iter 616/773 - loss 0.02090922 - time (sec): 35.05 - samples/sec: 2800.73 - lr: 0.000017 - momentum: 0.000000
2023-10-25 11:27:37,188 epoch 5 - iter 693/773 - loss 0.02083139 - time (sec): 39.25 - samples/sec: 2813.48 - lr: 0.000017 - momentum: 0.000000
2023-10-25 11:27:41,590 epoch 5 - iter 770/773 - loss 0.01980612 - time (sec): 43.65 - samples/sec: 2839.77 - lr: 0.000017 - momentum: 0.000000
2023-10-25 11:27:41,748 ----------------------------------------------------------------------------------------------------
2023-10-25 11:27:41,748 EPOCH 5 done: loss 0.0198 - lr: 0.000017
2023-10-25 11:27:44,317 DEV : loss 0.10546855628490448 - f1-score (micro avg) 0.7653
2023-10-25 11:27:44,335 ----------------------------------------------------------------------------------------------------
2023-10-25 11:27:48,611 epoch 6 - iter 77/773 - loss 0.01097830 - time (sec): 4.27 - samples/sec: 2852.95 - lr: 0.000016 - momentum: 0.000000
2023-10-25 11:27:53,219 epoch 6 - iter 154/773 - loss 0.01069205 - time (sec): 8.88 - samples/sec: 2781.94 - lr: 0.000016 - momentum: 0.000000
2023-10-25 11:27:57,904 epoch 6 - iter 231/773 - loss 0.00999344 - time (sec): 13.57 - samples/sec: 2751.47 - lr: 0.000016 - momentum: 0.000000
2023-10-25 11:28:02,448 epoch 6 - iter 308/773 - loss 0.01106499 - time (sec): 18.11 - samples/sec: 2721.28 - lr: 0.000015 - momentum: 0.000000
2023-10-25 11:28:07,185 epoch 6 - iter 385/773 - loss 0.01289234 - time (sec): 22.85 - samples/sec: 2769.63 - lr: 0.000015 - momentum: 0.000000
2023-10-25 11:28:11,711 epoch 6 - iter 462/773 - loss 0.01300909 - time (sec): 27.38 - samples/sec: 2767.91 - lr: 0.000015 - momentum: 0.000000
2023-10-25 11:28:16,226 epoch 6 - iter 539/773 - loss 0.01390742 - time (sec): 31.89 - samples/sec: 2740.14 - lr: 0.000014 - momentum: 0.000000
2023-10-25 11:28:20,802 epoch 6 - iter 616/773 - loss 0.01367765 - time (sec): 36.47 - samples/sec: 2730.90 - lr: 0.000014 - momentum: 0.000000
2023-10-25 11:28:25,371 epoch 6 - iter 693/773 - loss 0.01407704 - time (sec): 41.03 - samples/sec: 2718.67 - lr: 0.000014 - momentum: 0.000000
2023-10-25 11:28:29,956 epoch 6 - iter 770/773 - loss 0.01382031 - time (sec): 45.62 - samples/sec: 2714.49 - lr: 0.000013 - momentum: 0.000000
2023-10-25 11:28:30,128 ----------------------------------------------------------------------------------------------------
2023-10-25 11:28:30,128 EPOCH 6 done: loss 0.0138 - lr: 0.000013
2023-10-25 11:28:33,108 DEV : loss 0.1092146635055542 - f1-score (micro avg) 0.7919
2023-10-25 11:28:33,124 ----------------------------------------------------------------------------------------------------
2023-10-25 11:28:37,466 epoch 7 - iter 77/773 - loss 0.00808285 - time (sec): 4.34 - samples/sec: 2808.41 - lr: 0.000013 - momentum: 0.000000
2023-10-25 11:28:41,713 epoch 7 - iter 154/773 - loss 0.01054920 - time (sec): 8.59 - samples/sec: 2892.61 - lr: 0.000013 - momentum: 0.000000
2023-10-25 11:28:45,847 epoch 7 - iter 231/773 - loss 0.00910599 - time (sec): 12.72 - samples/sec: 2943.80 - lr: 0.000012 - momentum: 0.000000
2023-10-25 11:28:50,141 epoch 7 - iter 308/773 - loss 0.00849477 - time (sec): 17.02 - samples/sec: 2918.19 - lr: 0.000012 - momentum: 0.000000
2023-10-25 11:28:54,420 epoch 7 - iter 385/773 - loss 0.00844130 - time (sec): 21.29 - samples/sec: 2882.76 - lr: 0.000012 - momentum: 0.000000
2023-10-25 11:28:58,725 epoch 7 - iter 462/773 - loss 0.00830111 - time (sec): 25.60 - samples/sec: 2908.43 - lr: 0.000011 - momentum: 0.000000
2023-10-25 11:29:03,175 epoch 7 - iter 539/773 - loss 0.01004841 - time (sec): 30.05 - samples/sec: 2876.33 - lr: 0.000011 - momentum: 0.000000
2023-10-25 11:29:07,818 epoch 7 - iter 616/773 - loss 0.00946287 - time (sec): 34.69 - samples/sec: 2831.29 - lr: 0.000011 - momentum: 0.000000
2023-10-25 11:29:12,320 epoch 7 - iter 693/773 - loss 0.00905604 - time (sec): 39.19 - samples/sec: 2834.21 - lr: 0.000010 - momentum: 0.000000
2023-10-25 11:29:16,815 epoch 7 - iter 770/773 - loss 0.00934767 - time (sec): 43.69 - samples/sec: 2835.04 - lr: 0.000010 - momentum: 0.000000
2023-10-25 11:29:16,982 ----------------------------------------------------------------------------------------------------
2023-10-25 11:29:16,983 EPOCH 7 done: loss 0.0093 - lr: 0.000010
2023-10-25 11:29:19,518 DEV : loss 0.1093023419380188 - f1-score (micro avg) 0.7848
2023-10-25 11:29:19,537 ----------------------------------------------------------------------------------------------------
2023-10-25 11:29:23,811 epoch 8 - iter 77/773 - loss 0.00671671 - time (sec): 4.27 - samples/sec: 2797.82 - lr: 0.000010 - momentum: 0.000000
2023-10-25 11:29:28,182 epoch 8 - iter 154/773 - loss 0.00697096 - time (sec): 8.64 - samples/sec: 2893.67 - lr: 0.000009 - momentum: 0.000000
2023-10-25 11:29:32,549 epoch 8 - iter 231/773 - loss 0.00623998 - time (sec): 13.01 - samples/sec: 2896.37 - lr: 0.000009 - momentum: 0.000000
2023-10-25 11:29:36,864 epoch 8 - iter 308/773 - loss 0.00599104 - time (sec): 17.33 - samples/sec: 2900.18 - lr: 0.000009 - momentum: 0.000000
2023-10-25 11:29:41,202 epoch 8 - iter 385/773 - loss 0.00649897 - time (sec): 21.66 - samples/sec: 2890.66 - lr: 0.000008 - momentum: 0.000000
2023-10-25 11:29:45,564 epoch 8 - iter 462/773 - loss 0.00718124 - time (sec): 26.03 - samples/sec: 2848.14 - lr: 0.000008 - momentum: 0.000000
2023-10-25 11:29:49,995 epoch 8 - iter 539/773 - loss 0.00668630 - time (sec): 30.46 - samples/sec: 2846.89 - lr: 0.000008 - momentum: 0.000000
2023-10-25 11:29:54,430 epoch 8 - iter 616/773 - loss 0.00648273 - time (sec): 34.89 - samples/sec: 2835.96 - lr: 0.000007 - momentum: 0.000000
2023-10-25 11:29:58,956 epoch 8 - iter 693/773 - loss 0.00657413 - time (sec): 39.42 - samples/sec: 2819.74 - lr: 0.000007 - momentum: 0.000000
2023-10-25 11:30:03,306 epoch 8 - iter 770/773 - loss 0.00648703 - time (sec): 43.77 - samples/sec: 2824.90 - lr: 0.000007 - momentum: 0.000000
2023-10-25 11:30:03,477 ----------------------------------------------------------------------------------------------------
2023-10-25 11:30:03,477 EPOCH 8 done: loss 0.0065 - lr: 0.000007
2023-10-25 11:30:06,018 DEV : loss 0.12693718075752258 - f1-score (micro avg) 0.7553
2023-10-25 11:30:06,034 ----------------------------------------------------------------------------------------------------
2023-10-25 11:30:10,578 epoch 9 - iter 77/773 - loss 0.00163409 - time (sec): 4.54 - samples/sec: 2700.63 - lr: 0.000006 - momentum: 0.000000
2023-10-25 11:30:15,192 epoch 9 - iter 154/773 - loss 0.00370643 - time (sec): 9.16 - samples/sec: 2665.87 - lr: 0.000006 - momentum: 0.000000
2023-10-25 11:30:20,010 epoch 9 - iter 231/773 - loss 0.00354968 - time (sec): 13.97 - samples/sec: 2615.36 - lr: 0.000006 - momentum: 0.000000
2023-10-25 11:30:24,754 epoch 9 - iter 308/773 - loss 0.00327572 - time (sec): 18.72 - samples/sec: 2612.04 - lr: 0.000005 - momentum: 0.000000
2023-10-25 11:30:29,255 epoch 9 - iter 385/773 - loss 0.00341277 - time (sec): 23.22 - samples/sec: 2684.08 - lr: 0.000005 - momentum: 0.000000
2023-10-25 11:30:33,495 epoch 9 - iter 462/773 - loss 0.00316797 - time (sec): 27.46 - samples/sec: 2715.67 - lr: 0.000005 - momentum: 0.000000
2023-10-25 11:30:37,782 epoch 9 - iter 539/773 - loss 0.00347581 - time (sec): 31.75 - samples/sec: 2734.77 - lr: 0.000004 - momentum: 0.000000
2023-10-25 11:30:42,176 epoch 9 - iter 616/773 - loss 0.00395273 - time (sec): 36.14 - samples/sec: 2760.41 - lr: 0.000004 - momentum: 0.000000
2023-10-25 11:30:46,387 epoch 9 - iter 693/773 - loss 0.00399888 - time (sec): 40.35 - samples/sec: 2786.00 - lr: 0.000004 - momentum: 0.000000
2023-10-25 11:30:50,631 epoch 9 - iter 770/773 - loss 0.00454743 - time (sec): 44.59 - samples/sec: 2777.36 - lr: 0.000003 - momentum: 0.000000
2023-10-25 11:30:50,808 ----------------------------------------------------------------------------------------------------
2023-10-25 11:30:50,808 EPOCH 9 done: loss 0.0045 - lr: 0.000003
2023-10-25 11:30:53,316 DEV : loss 0.12672311067581177 - f1-score (micro avg) 0.7758
2023-10-25 11:30:53,337 ----------------------------------------------------------------------------------------------------
2023-10-25 11:30:58,434 epoch 10 - iter 77/773 - loss 0.00097966 - time (sec): 5.10 - samples/sec: 2687.48 - lr: 0.000003 - momentum: 0.000000
2023-10-25 11:31:03,219 epoch 10 - iter 154/773 - loss 0.00096282 - time (sec): 9.88 - samples/sec: 2580.96 - lr: 0.000003 - momentum: 0.000000
2023-10-25 11:31:07,705 epoch 10 - iter 231/773 - loss 0.00100765 - time (sec): 14.37 - samples/sec: 2665.67 - lr: 0.000002 - momentum: 0.000000
2023-10-25 11:31:12,108 epoch 10 - iter 308/773 - loss 0.00103783 - time (sec): 18.77 - samples/sec: 2699.24 - lr: 0.000002 - momentum: 0.000000
2023-10-25 11:31:16,706 epoch 10 - iter 385/773 - loss 0.00112711 - time (sec): 23.37 - samples/sec: 2721.46 - lr: 0.000002 - momentum: 0.000000
2023-10-25 11:31:21,631 epoch 10 - iter 462/773 - loss 0.00170921 - time (sec): 28.29 - samples/sec: 2684.80 - lr: 0.000001 - momentum: 0.000000
2023-10-25 11:31:25,883 epoch 10 - iter 539/773 - loss 0.00217353 - time (sec): 32.54 - samples/sec: 2697.81 - lr: 0.000001 - momentum: 0.000000
2023-10-25 11:31:30,157 epoch 10 - iter 616/773 - loss 0.00225198 - time (sec): 36.82 - samples/sec: 2708.18 - lr: 0.000001 - momentum: 0.000000
2023-10-25 11:31:34,532 epoch 10 - iter 693/773 - loss 0.00229876 - time (sec): 41.19 - samples/sec: 2717.64 - lr: 0.000000 - momentum: 0.000000
2023-10-25 11:31:38,969 epoch 10 - iter 770/773 - loss 0.00247570 - time (sec): 45.63 - samples/sec: 2715.19 - lr: 0.000000 - momentum: 0.000000
2023-10-25 11:31:39,133 ----------------------------------------------------------------------------------------------------
2023-10-25 11:31:39,134 EPOCH 10 done: loss 0.0026 - lr: 0.000000
2023-10-25 11:31:42,020 DEV : loss 0.13155733048915863 - f1-score (micro avg) 0.7645
2023-10-25 11:31:42,974 ----------------------------------------------------------------------------------------------------
2023-10-25 11:31:42,975 Loading model from best epoch ...
2023-10-25 11:31:44,802 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET
2023-10-25 11:31:53,488
Results:
- F-score (micro) 0.7909
- F-score (macro) 0.693
- Accuracy 0.67
By class:
precision recall f1-score support
LOC 0.8082 0.8552 0.8310 946
BUILDING 0.6884 0.5135 0.5882 185
STREET 0.7805 0.5714 0.6598 56
micro avg 0.7932 0.7885 0.7909 1187
macro avg 0.7590 0.6467 0.6930 1187
weighted avg 0.7882 0.7885 0.7851 1187
2023-10-25 11:31:53,489 ----------------------------------------------------------------------------------------------------