|
2023-10-25 11:23:45,120 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:23:45,121 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(64001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=13, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-25 11:23:45,122 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:23:45,122 MultiCorpus: 6183 train + 680 dev + 2113 test sentences |
|
- NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator |
|
2023-10-25 11:23:45,122 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:23:45,122 Train: 6183 sentences |
|
2023-10-25 11:23:45,122 (train_with_dev=False, train_with_test=False) |
|
2023-10-25 11:23:45,122 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:23:45,122 Training Params: |
|
2023-10-25 11:23:45,122 - learning_rate: "3e-05" |
|
2023-10-25 11:23:45,122 - mini_batch_size: "8" |
|
2023-10-25 11:23:45,122 - max_epochs: "10" |
|
2023-10-25 11:23:45,122 - shuffle: "True" |
|
2023-10-25 11:23:45,122 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:23:45,122 Plugins: |
|
2023-10-25 11:23:45,122 - TensorboardLogger |
|
2023-10-25 11:23:45,123 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-25 11:23:45,123 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:23:45,123 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-25 11:23:45,123 - metric: "('micro avg', 'f1-score')" |
|
2023-10-25 11:23:45,123 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:23:45,123 Computation: |
|
2023-10-25 11:23:45,123 - compute on device: cuda:0 |
|
2023-10-25 11:23:45,123 - embedding storage: none |
|
2023-10-25 11:23:45,123 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:23:45,123 Model training base path: "hmbench-topres19th/en-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3" |
|
2023-10-25 11:23:45,123 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:23:45,123 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:23:45,123 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-25 11:23:50,075 epoch 1 - iter 77/773 - loss 1.91678480 - time (sec): 4.95 - samples/sec: 2874.84 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-25 11:23:54,493 epoch 1 - iter 154/773 - loss 1.15435044 - time (sec): 9.37 - samples/sec: 2781.06 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-25 11:23:58,988 epoch 1 - iter 231/773 - loss 0.83774526 - time (sec): 13.86 - samples/sec: 2790.82 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-25 11:24:03,379 epoch 1 - iter 308/773 - loss 0.66749755 - time (sec): 18.26 - samples/sec: 2784.22 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-25 11:24:08,082 epoch 1 - iter 385/773 - loss 0.56093101 - time (sec): 22.96 - samples/sec: 2754.85 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-25 11:24:12,562 epoch 1 - iter 462/773 - loss 0.49653847 - time (sec): 27.44 - samples/sec: 2714.10 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-25 11:24:16,898 epoch 1 - iter 539/773 - loss 0.44368224 - time (sec): 31.77 - samples/sec: 2725.13 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-25 11:24:21,264 epoch 1 - iter 616/773 - loss 0.39898395 - time (sec): 36.14 - samples/sec: 2742.88 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-25 11:24:25,543 epoch 1 - iter 693/773 - loss 0.36556811 - time (sec): 40.42 - samples/sec: 2757.54 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-25 11:24:29,876 epoch 1 - iter 770/773 - loss 0.33864681 - time (sec): 44.75 - samples/sec: 2765.28 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-25 11:24:30,037 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:24:30,038 EPOCH 1 done: loss 0.3377 - lr: 0.000030 |
|
2023-10-25 11:24:33,102 DEV : loss 0.06016210466623306 - f1-score (micro avg) 0.7285 |
|
2023-10-25 11:24:33,119 saving best model |
|
2023-10-25 11:24:33,572 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:24:37,785 epoch 2 - iter 77/773 - loss 0.07630160 - time (sec): 4.21 - samples/sec: 2796.95 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-25 11:24:42,099 epoch 2 - iter 154/773 - loss 0.07590975 - time (sec): 8.53 - samples/sec: 2887.65 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-25 11:24:46,938 epoch 2 - iter 231/773 - loss 0.07648601 - time (sec): 13.36 - samples/sec: 2844.76 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-25 11:24:51,715 epoch 2 - iter 308/773 - loss 0.07250012 - time (sec): 18.14 - samples/sec: 2818.90 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-25 11:24:56,017 epoch 2 - iter 385/773 - loss 0.07287862 - time (sec): 22.44 - samples/sec: 2828.12 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-25 11:25:00,268 epoch 2 - iter 462/773 - loss 0.07298913 - time (sec): 26.69 - samples/sec: 2806.41 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-25 11:25:04,535 epoch 2 - iter 539/773 - loss 0.07213277 - time (sec): 30.96 - samples/sec: 2808.25 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-25 11:25:08,906 epoch 2 - iter 616/773 - loss 0.07150224 - time (sec): 35.33 - samples/sec: 2817.08 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-25 11:25:13,090 epoch 2 - iter 693/773 - loss 0.07238655 - time (sec): 39.52 - samples/sec: 2815.06 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-25 11:25:17,354 epoch 2 - iter 770/773 - loss 0.07180071 - time (sec): 43.78 - samples/sec: 2826.40 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-25 11:25:17,537 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:25:17,537 EPOCH 2 done: loss 0.0717 - lr: 0.000027 |
|
2023-10-25 11:25:20,202 DEV : loss 0.04841422662138939 - f1-score (micro avg) 0.7897 |
|
2023-10-25 11:25:20,220 saving best model |
|
2023-10-25 11:25:20,869 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:25:25,415 epoch 3 - iter 77/773 - loss 0.03585561 - time (sec): 4.54 - samples/sec: 2729.38 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-25 11:25:30,524 epoch 3 - iter 154/773 - loss 0.03611039 - time (sec): 9.65 - samples/sec: 2571.24 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-25 11:25:35,189 epoch 3 - iter 231/773 - loss 0.03766398 - time (sec): 14.32 - samples/sec: 2687.59 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-25 11:25:39,730 epoch 3 - iter 308/773 - loss 0.03782797 - time (sec): 18.86 - samples/sec: 2690.26 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-25 11:25:44,174 epoch 3 - iter 385/773 - loss 0.04228608 - time (sec): 23.30 - samples/sec: 2675.69 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-25 11:25:48,714 epoch 3 - iter 462/773 - loss 0.04114786 - time (sec): 27.84 - samples/sec: 2637.81 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-25 11:25:53,418 epoch 3 - iter 539/773 - loss 0.04108091 - time (sec): 32.54 - samples/sec: 2655.14 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-25 11:25:57,981 epoch 3 - iter 616/773 - loss 0.04075527 - time (sec): 37.11 - samples/sec: 2660.94 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-25 11:26:02,262 epoch 3 - iter 693/773 - loss 0.04114755 - time (sec): 41.39 - samples/sec: 2689.33 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-25 11:26:06,577 epoch 3 - iter 770/773 - loss 0.04149795 - time (sec): 45.70 - samples/sec: 2712.34 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-25 11:26:06,737 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:26:06,738 EPOCH 3 done: loss 0.0414 - lr: 0.000023 |
|
2023-10-25 11:26:09,120 DEV : loss 0.07111605256795883 - f1-score (micro avg) 0.7925 |
|
2023-10-25 11:26:09,138 saving best model |
|
2023-10-25 11:26:09,841 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:26:14,547 epoch 4 - iter 77/773 - loss 0.01773509 - time (sec): 4.70 - samples/sec: 2731.17 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-25 11:26:19,254 epoch 4 - iter 154/773 - loss 0.02615240 - time (sec): 9.41 - samples/sec: 2734.92 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-25 11:26:23,788 epoch 4 - iter 231/773 - loss 0.02603226 - time (sec): 13.95 - samples/sec: 2756.74 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-25 11:26:28,325 epoch 4 - iter 308/773 - loss 0.02587723 - time (sec): 18.48 - samples/sec: 2747.31 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-25 11:26:32,834 epoch 4 - iter 385/773 - loss 0.02487878 - time (sec): 22.99 - samples/sec: 2755.18 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-25 11:26:37,187 epoch 4 - iter 462/773 - loss 0.02646341 - time (sec): 27.34 - samples/sec: 2773.65 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-25 11:26:41,447 epoch 4 - iter 539/773 - loss 0.02772075 - time (sec): 31.60 - samples/sec: 2769.18 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-25 11:26:45,981 epoch 4 - iter 616/773 - loss 0.02778736 - time (sec): 36.14 - samples/sec: 2743.29 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-25 11:26:50,560 epoch 4 - iter 693/773 - loss 0.02887018 - time (sec): 40.72 - samples/sec: 2717.05 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-25 11:26:55,041 epoch 4 - iter 770/773 - loss 0.02903954 - time (sec): 45.20 - samples/sec: 2737.37 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-25 11:26:55,221 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:26:55,222 EPOCH 4 done: loss 0.0291 - lr: 0.000020 |
|
2023-10-25 11:26:57,921 DEV : loss 0.08298607915639877 - f1-score (micro avg) 0.7716 |
|
2023-10-25 11:26:57,937 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:27:02,328 epoch 5 - iter 77/773 - loss 0.02702620 - time (sec): 4.39 - samples/sec: 2672.32 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-25 11:27:06,657 epoch 5 - iter 154/773 - loss 0.02292715 - time (sec): 8.72 - samples/sec: 2750.18 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-25 11:27:11,263 epoch 5 - iter 231/773 - loss 0.02016044 - time (sec): 13.32 - samples/sec: 2754.22 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-25 11:27:15,785 epoch 5 - iter 308/773 - loss 0.02010956 - time (sec): 17.85 - samples/sec: 2752.40 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-25 11:27:20,238 epoch 5 - iter 385/773 - loss 0.02039984 - time (sec): 22.30 - samples/sec: 2718.24 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-25 11:27:24,677 epoch 5 - iter 462/773 - loss 0.02190141 - time (sec): 26.74 - samples/sec: 2745.65 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-25 11:27:28,819 epoch 5 - iter 539/773 - loss 0.02138656 - time (sec): 30.88 - samples/sec: 2776.01 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-25 11:27:32,991 epoch 5 - iter 616/773 - loss 0.02090922 - time (sec): 35.05 - samples/sec: 2800.73 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-25 11:27:37,188 epoch 5 - iter 693/773 - loss 0.02083139 - time (sec): 39.25 - samples/sec: 2813.48 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-25 11:27:41,590 epoch 5 - iter 770/773 - loss 0.01980612 - time (sec): 43.65 - samples/sec: 2839.77 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-25 11:27:41,748 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:27:41,748 EPOCH 5 done: loss 0.0198 - lr: 0.000017 |
|
2023-10-25 11:27:44,317 DEV : loss 0.10546855628490448 - f1-score (micro avg) 0.7653 |
|
2023-10-25 11:27:44,335 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:27:48,611 epoch 6 - iter 77/773 - loss 0.01097830 - time (sec): 4.27 - samples/sec: 2852.95 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-25 11:27:53,219 epoch 6 - iter 154/773 - loss 0.01069205 - time (sec): 8.88 - samples/sec: 2781.94 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-25 11:27:57,904 epoch 6 - iter 231/773 - loss 0.00999344 - time (sec): 13.57 - samples/sec: 2751.47 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-25 11:28:02,448 epoch 6 - iter 308/773 - loss 0.01106499 - time (sec): 18.11 - samples/sec: 2721.28 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-25 11:28:07,185 epoch 6 - iter 385/773 - loss 0.01289234 - time (sec): 22.85 - samples/sec: 2769.63 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-25 11:28:11,711 epoch 6 - iter 462/773 - loss 0.01300909 - time (sec): 27.38 - samples/sec: 2767.91 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-25 11:28:16,226 epoch 6 - iter 539/773 - loss 0.01390742 - time (sec): 31.89 - samples/sec: 2740.14 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-25 11:28:20,802 epoch 6 - iter 616/773 - loss 0.01367765 - time (sec): 36.47 - samples/sec: 2730.90 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-25 11:28:25,371 epoch 6 - iter 693/773 - loss 0.01407704 - time (sec): 41.03 - samples/sec: 2718.67 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-25 11:28:29,956 epoch 6 - iter 770/773 - loss 0.01382031 - time (sec): 45.62 - samples/sec: 2714.49 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-25 11:28:30,128 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:28:30,128 EPOCH 6 done: loss 0.0138 - lr: 0.000013 |
|
2023-10-25 11:28:33,108 DEV : loss 0.1092146635055542 - f1-score (micro avg) 0.7919 |
|
2023-10-25 11:28:33,124 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:28:37,466 epoch 7 - iter 77/773 - loss 0.00808285 - time (sec): 4.34 - samples/sec: 2808.41 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-25 11:28:41,713 epoch 7 - iter 154/773 - loss 0.01054920 - time (sec): 8.59 - samples/sec: 2892.61 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-25 11:28:45,847 epoch 7 - iter 231/773 - loss 0.00910599 - time (sec): 12.72 - samples/sec: 2943.80 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-25 11:28:50,141 epoch 7 - iter 308/773 - loss 0.00849477 - time (sec): 17.02 - samples/sec: 2918.19 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-25 11:28:54,420 epoch 7 - iter 385/773 - loss 0.00844130 - time (sec): 21.29 - samples/sec: 2882.76 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-25 11:28:58,725 epoch 7 - iter 462/773 - loss 0.00830111 - time (sec): 25.60 - samples/sec: 2908.43 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-25 11:29:03,175 epoch 7 - iter 539/773 - loss 0.01004841 - time (sec): 30.05 - samples/sec: 2876.33 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-25 11:29:07,818 epoch 7 - iter 616/773 - loss 0.00946287 - time (sec): 34.69 - samples/sec: 2831.29 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-25 11:29:12,320 epoch 7 - iter 693/773 - loss 0.00905604 - time (sec): 39.19 - samples/sec: 2834.21 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-25 11:29:16,815 epoch 7 - iter 770/773 - loss 0.00934767 - time (sec): 43.69 - samples/sec: 2835.04 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-25 11:29:16,982 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:29:16,983 EPOCH 7 done: loss 0.0093 - lr: 0.000010 |
|
2023-10-25 11:29:19,518 DEV : loss 0.1093023419380188 - f1-score (micro avg) 0.7848 |
|
2023-10-25 11:29:19,537 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:29:23,811 epoch 8 - iter 77/773 - loss 0.00671671 - time (sec): 4.27 - samples/sec: 2797.82 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-25 11:29:28,182 epoch 8 - iter 154/773 - loss 0.00697096 - time (sec): 8.64 - samples/sec: 2893.67 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-25 11:29:32,549 epoch 8 - iter 231/773 - loss 0.00623998 - time (sec): 13.01 - samples/sec: 2896.37 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-25 11:29:36,864 epoch 8 - iter 308/773 - loss 0.00599104 - time (sec): 17.33 - samples/sec: 2900.18 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-25 11:29:41,202 epoch 8 - iter 385/773 - loss 0.00649897 - time (sec): 21.66 - samples/sec: 2890.66 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-25 11:29:45,564 epoch 8 - iter 462/773 - loss 0.00718124 - time (sec): 26.03 - samples/sec: 2848.14 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-25 11:29:49,995 epoch 8 - iter 539/773 - loss 0.00668630 - time (sec): 30.46 - samples/sec: 2846.89 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-25 11:29:54,430 epoch 8 - iter 616/773 - loss 0.00648273 - time (sec): 34.89 - samples/sec: 2835.96 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-25 11:29:58,956 epoch 8 - iter 693/773 - loss 0.00657413 - time (sec): 39.42 - samples/sec: 2819.74 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-25 11:30:03,306 epoch 8 - iter 770/773 - loss 0.00648703 - time (sec): 43.77 - samples/sec: 2824.90 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-25 11:30:03,477 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:30:03,477 EPOCH 8 done: loss 0.0065 - lr: 0.000007 |
|
2023-10-25 11:30:06,018 DEV : loss 0.12693718075752258 - f1-score (micro avg) 0.7553 |
|
2023-10-25 11:30:06,034 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:30:10,578 epoch 9 - iter 77/773 - loss 0.00163409 - time (sec): 4.54 - samples/sec: 2700.63 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-25 11:30:15,192 epoch 9 - iter 154/773 - loss 0.00370643 - time (sec): 9.16 - samples/sec: 2665.87 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-25 11:30:20,010 epoch 9 - iter 231/773 - loss 0.00354968 - time (sec): 13.97 - samples/sec: 2615.36 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-25 11:30:24,754 epoch 9 - iter 308/773 - loss 0.00327572 - time (sec): 18.72 - samples/sec: 2612.04 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-25 11:30:29,255 epoch 9 - iter 385/773 - loss 0.00341277 - time (sec): 23.22 - samples/sec: 2684.08 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-25 11:30:33,495 epoch 9 - iter 462/773 - loss 0.00316797 - time (sec): 27.46 - samples/sec: 2715.67 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-25 11:30:37,782 epoch 9 - iter 539/773 - loss 0.00347581 - time (sec): 31.75 - samples/sec: 2734.77 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-25 11:30:42,176 epoch 9 - iter 616/773 - loss 0.00395273 - time (sec): 36.14 - samples/sec: 2760.41 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-25 11:30:46,387 epoch 9 - iter 693/773 - loss 0.00399888 - time (sec): 40.35 - samples/sec: 2786.00 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-25 11:30:50,631 epoch 9 - iter 770/773 - loss 0.00454743 - time (sec): 44.59 - samples/sec: 2777.36 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-25 11:30:50,808 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:30:50,808 EPOCH 9 done: loss 0.0045 - lr: 0.000003 |
|
2023-10-25 11:30:53,316 DEV : loss 0.12672311067581177 - f1-score (micro avg) 0.7758 |
|
2023-10-25 11:30:53,337 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:30:58,434 epoch 10 - iter 77/773 - loss 0.00097966 - time (sec): 5.10 - samples/sec: 2687.48 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-25 11:31:03,219 epoch 10 - iter 154/773 - loss 0.00096282 - time (sec): 9.88 - samples/sec: 2580.96 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-25 11:31:07,705 epoch 10 - iter 231/773 - loss 0.00100765 - time (sec): 14.37 - samples/sec: 2665.67 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-25 11:31:12,108 epoch 10 - iter 308/773 - loss 0.00103783 - time (sec): 18.77 - samples/sec: 2699.24 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-25 11:31:16,706 epoch 10 - iter 385/773 - loss 0.00112711 - time (sec): 23.37 - samples/sec: 2721.46 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-25 11:31:21,631 epoch 10 - iter 462/773 - loss 0.00170921 - time (sec): 28.29 - samples/sec: 2684.80 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-25 11:31:25,883 epoch 10 - iter 539/773 - loss 0.00217353 - time (sec): 32.54 - samples/sec: 2697.81 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-25 11:31:30,157 epoch 10 - iter 616/773 - loss 0.00225198 - time (sec): 36.82 - samples/sec: 2708.18 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-25 11:31:34,532 epoch 10 - iter 693/773 - loss 0.00229876 - time (sec): 41.19 - samples/sec: 2717.64 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-25 11:31:38,969 epoch 10 - iter 770/773 - loss 0.00247570 - time (sec): 45.63 - samples/sec: 2715.19 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-25 11:31:39,133 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:31:39,134 EPOCH 10 done: loss 0.0026 - lr: 0.000000 |
|
2023-10-25 11:31:42,020 DEV : loss 0.13155733048915863 - f1-score (micro avg) 0.7645 |
|
2023-10-25 11:31:42,974 ---------------------------------------------------------------------------------------------------- |
|
2023-10-25 11:31:42,975 Loading model from best epoch ... |
|
2023-10-25 11:31:44,802 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET |
|
2023-10-25 11:31:53,488 |
|
Results: |
|
- F-score (micro) 0.7909 |
|
- F-score (macro) 0.693 |
|
- Accuracy 0.67 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
LOC 0.8082 0.8552 0.8310 946 |
|
BUILDING 0.6884 0.5135 0.5882 185 |
|
STREET 0.7805 0.5714 0.6598 56 |
|
|
|
micro avg 0.7932 0.7885 0.7909 1187 |
|
macro avg 0.7590 0.6467 0.6930 1187 |
|
weighted avg 0.7882 0.7885 0.7851 1187 |
|
|
|
2023-10-25 11:31:53,489 ---------------------------------------------------------------------------------------------------- |
|
|