Upload ./training.log with huggingface_hub
Browse files- training.log +240 -0
training.log
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 11:23:45,120 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 11:23:45,121 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-25 11:23:45,122 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-25 11:23:45,122 MultiCorpus: 6183 train + 680 dev + 2113 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator
|
53 |
+
2023-10-25 11:23:45,122 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-25 11:23:45,122 Train: 6183 sentences
|
55 |
+
2023-10-25 11:23:45,122 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-25 11:23:45,122 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-25 11:23:45,122 Training Params:
|
58 |
+
2023-10-25 11:23:45,122 - learning_rate: "3e-05"
|
59 |
+
2023-10-25 11:23:45,122 - mini_batch_size: "8"
|
60 |
+
2023-10-25 11:23:45,122 - max_epochs: "10"
|
61 |
+
2023-10-25 11:23:45,122 - shuffle: "True"
|
62 |
+
2023-10-25 11:23:45,122 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-25 11:23:45,122 Plugins:
|
64 |
+
2023-10-25 11:23:45,122 - TensorboardLogger
|
65 |
+
2023-10-25 11:23:45,123 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-25 11:23:45,123 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-25 11:23:45,123 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-25 11:23:45,123 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-25 11:23:45,123 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-25 11:23:45,123 Computation:
|
71 |
+
2023-10-25 11:23:45,123 - compute on device: cuda:0
|
72 |
+
2023-10-25 11:23:45,123 - embedding storage: none
|
73 |
+
2023-10-25 11:23:45,123 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-25 11:23:45,123 Model training base path: "hmbench-topres19th/en-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
|
75 |
+
2023-10-25 11:23:45,123 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-25 11:23:45,123 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-25 11:23:45,123 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-25 11:23:50,075 epoch 1 - iter 77/773 - loss 1.91678480 - time (sec): 4.95 - samples/sec: 2874.84 - lr: 0.000003 - momentum: 0.000000
|
79 |
+
2023-10-25 11:23:54,493 epoch 1 - iter 154/773 - loss 1.15435044 - time (sec): 9.37 - samples/sec: 2781.06 - lr: 0.000006 - momentum: 0.000000
|
80 |
+
2023-10-25 11:23:58,988 epoch 1 - iter 231/773 - loss 0.83774526 - time (sec): 13.86 - samples/sec: 2790.82 - lr: 0.000009 - momentum: 0.000000
|
81 |
+
2023-10-25 11:24:03,379 epoch 1 - iter 308/773 - loss 0.66749755 - time (sec): 18.26 - samples/sec: 2784.22 - lr: 0.000012 - momentum: 0.000000
|
82 |
+
2023-10-25 11:24:08,082 epoch 1 - iter 385/773 - loss 0.56093101 - time (sec): 22.96 - samples/sec: 2754.85 - lr: 0.000015 - momentum: 0.000000
|
83 |
+
2023-10-25 11:24:12,562 epoch 1 - iter 462/773 - loss 0.49653847 - time (sec): 27.44 - samples/sec: 2714.10 - lr: 0.000018 - momentum: 0.000000
|
84 |
+
2023-10-25 11:24:16,898 epoch 1 - iter 539/773 - loss 0.44368224 - time (sec): 31.77 - samples/sec: 2725.13 - lr: 0.000021 - momentum: 0.000000
|
85 |
+
2023-10-25 11:24:21,264 epoch 1 - iter 616/773 - loss 0.39898395 - time (sec): 36.14 - samples/sec: 2742.88 - lr: 0.000024 - momentum: 0.000000
|
86 |
+
2023-10-25 11:24:25,543 epoch 1 - iter 693/773 - loss 0.36556811 - time (sec): 40.42 - samples/sec: 2757.54 - lr: 0.000027 - momentum: 0.000000
|
87 |
+
2023-10-25 11:24:29,876 epoch 1 - iter 770/773 - loss 0.33864681 - time (sec): 44.75 - samples/sec: 2765.28 - lr: 0.000030 - momentum: 0.000000
|
88 |
+
2023-10-25 11:24:30,037 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-25 11:24:30,038 EPOCH 1 done: loss 0.3377 - lr: 0.000030
|
90 |
+
2023-10-25 11:24:33,102 DEV : loss 0.06016210466623306 - f1-score (micro avg) 0.7285
|
91 |
+
2023-10-25 11:24:33,119 saving best model
|
92 |
+
2023-10-25 11:24:33,572 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-25 11:24:37,785 epoch 2 - iter 77/773 - loss 0.07630160 - time (sec): 4.21 - samples/sec: 2796.95 - lr: 0.000030 - momentum: 0.000000
|
94 |
+
2023-10-25 11:24:42,099 epoch 2 - iter 154/773 - loss 0.07590975 - time (sec): 8.53 - samples/sec: 2887.65 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-25 11:24:46,938 epoch 2 - iter 231/773 - loss 0.07648601 - time (sec): 13.36 - samples/sec: 2844.76 - lr: 0.000029 - momentum: 0.000000
|
96 |
+
2023-10-25 11:24:51,715 epoch 2 - iter 308/773 - loss 0.07250012 - time (sec): 18.14 - samples/sec: 2818.90 - lr: 0.000029 - momentum: 0.000000
|
97 |
+
2023-10-25 11:24:56,017 epoch 2 - iter 385/773 - loss 0.07287862 - time (sec): 22.44 - samples/sec: 2828.12 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-25 11:25:00,268 epoch 2 - iter 462/773 - loss 0.07298913 - time (sec): 26.69 - samples/sec: 2806.41 - lr: 0.000028 - momentum: 0.000000
|
99 |
+
2023-10-25 11:25:04,535 epoch 2 - iter 539/773 - loss 0.07213277 - time (sec): 30.96 - samples/sec: 2808.25 - lr: 0.000028 - momentum: 0.000000
|
100 |
+
2023-10-25 11:25:08,906 epoch 2 - iter 616/773 - loss 0.07150224 - time (sec): 35.33 - samples/sec: 2817.08 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-25 11:25:13,090 epoch 2 - iter 693/773 - loss 0.07238655 - time (sec): 39.52 - samples/sec: 2815.06 - lr: 0.000027 - momentum: 0.000000
|
102 |
+
2023-10-25 11:25:17,354 epoch 2 - iter 770/773 - loss 0.07180071 - time (sec): 43.78 - samples/sec: 2826.40 - lr: 0.000027 - momentum: 0.000000
|
103 |
+
2023-10-25 11:25:17,537 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-25 11:25:17,537 EPOCH 2 done: loss 0.0717 - lr: 0.000027
|
105 |
+
2023-10-25 11:25:20,202 DEV : loss 0.04841422662138939 - f1-score (micro avg) 0.7897
|
106 |
+
2023-10-25 11:25:20,220 saving best model
|
107 |
+
2023-10-25 11:25:20,869 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-25 11:25:25,415 epoch 3 - iter 77/773 - loss 0.03585561 - time (sec): 4.54 - samples/sec: 2729.38 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-25 11:25:30,524 epoch 3 - iter 154/773 - loss 0.03611039 - time (sec): 9.65 - samples/sec: 2571.24 - lr: 0.000026 - momentum: 0.000000
|
110 |
+
2023-10-25 11:25:35,189 epoch 3 - iter 231/773 - loss 0.03766398 - time (sec): 14.32 - samples/sec: 2687.59 - lr: 0.000026 - momentum: 0.000000
|
111 |
+
2023-10-25 11:25:39,730 epoch 3 - iter 308/773 - loss 0.03782797 - time (sec): 18.86 - samples/sec: 2690.26 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-25 11:25:44,174 epoch 3 - iter 385/773 - loss 0.04228608 - time (sec): 23.30 - samples/sec: 2675.69 - lr: 0.000025 - momentum: 0.000000
|
113 |
+
2023-10-25 11:25:48,714 epoch 3 - iter 462/773 - loss 0.04114786 - time (sec): 27.84 - samples/sec: 2637.81 - lr: 0.000025 - momentum: 0.000000
|
114 |
+
2023-10-25 11:25:53,418 epoch 3 - iter 539/773 - loss 0.04108091 - time (sec): 32.54 - samples/sec: 2655.14 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-25 11:25:57,981 epoch 3 - iter 616/773 - loss 0.04075527 - time (sec): 37.11 - samples/sec: 2660.94 - lr: 0.000024 - momentum: 0.000000
|
116 |
+
2023-10-25 11:26:02,262 epoch 3 - iter 693/773 - loss 0.04114755 - time (sec): 41.39 - samples/sec: 2689.33 - lr: 0.000024 - momentum: 0.000000
|
117 |
+
2023-10-25 11:26:06,577 epoch 3 - iter 770/773 - loss 0.04149795 - time (sec): 45.70 - samples/sec: 2712.34 - lr: 0.000023 - momentum: 0.000000
|
118 |
+
2023-10-25 11:26:06,737 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-25 11:26:06,738 EPOCH 3 done: loss 0.0414 - lr: 0.000023
|
120 |
+
2023-10-25 11:26:09,120 DEV : loss 0.07111605256795883 - f1-score (micro avg) 0.7925
|
121 |
+
2023-10-25 11:26:09,138 saving best model
|
122 |
+
2023-10-25 11:26:09,841 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-25 11:26:14,547 epoch 4 - iter 77/773 - loss 0.01773509 - time (sec): 4.70 - samples/sec: 2731.17 - lr: 0.000023 - momentum: 0.000000
|
124 |
+
2023-10-25 11:26:19,254 epoch 4 - iter 154/773 - loss 0.02615240 - time (sec): 9.41 - samples/sec: 2734.92 - lr: 0.000023 - momentum: 0.000000
|
125 |
+
2023-10-25 11:26:23,788 epoch 4 - iter 231/773 - loss 0.02603226 - time (sec): 13.95 - samples/sec: 2756.74 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-25 11:26:28,325 epoch 4 - iter 308/773 - loss 0.02587723 - time (sec): 18.48 - samples/sec: 2747.31 - lr: 0.000022 - momentum: 0.000000
|
127 |
+
2023-10-25 11:26:32,834 epoch 4 - iter 385/773 - loss 0.02487878 - time (sec): 22.99 - samples/sec: 2755.18 - lr: 0.000022 - momentum: 0.000000
|
128 |
+
2023-10-25 11:26:37,187 epoch 4 - iter 462/773 - loss 0.02646341 - time (sec): 27.34 - samples/sec: 2773.65 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-25 11:26:41,447 epoch 4 - iter 539/773 - loss 0.02772075 - time (sec): 31.60 - samples/sec: 2769.18 - lr: 0.000021 - momentum: 0.000000
|
130 |
+
2023-10-25 11:26:45,981 epoch 4 - iter 616/773 - loss 0.02778736 - time (sec): 36.14 - samples/sec: 2743.29 - lr: 0.000021 - momentum: 0.000000
|
131 |
+
2023-10-25 11:26:50,560 epoch 4 - iter 693/773 - loss 0.02887018 - time (sec): 40.72 - samples/sec: 2717.05 - lr: 0.000020 - momentum: 0.000000
|
132 |
+
2023-10-25 11:26:55,041 epoch 4 - iter 770/773 - loss 0.02903954 - time (sec): 45.20 - samples/sec: 2737.37 - lr: 0.000020 - momentum: 0.000000
|
133 |
+
2023-10-25 11:26:55,221 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-25 11:26:55,222 EPOCH 4 done: loss 0.0291 - lr: 0.000020
|
135 |
+
2023-10-25 11:26:57,921 DEV : loss 0.08298607915639877 - f1-score (micro avg) 0.7716
|
136 |
+
2023-10-25 11:26:57,937 ----------------------------------------------------------------------------------------------------
|
137 |
+
2023-10-25 11:27:02,328 epoch 5 - iter 77/773 - loss 0.02702620 - time (sec): 4.39 - samples/sec: 2672.32 - lr: 0.000020 - momentum: 0.000000
|
138 |
+
2023-10-25 11:27:06,657 epoch 5 - iter 154/773 - loss 0.02292715 - time (sec): 8.72 - samples/sec: 2750.18 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-10-25 11:27:11,263 epoch 5 - iter 231/773 - loss 0.02016044 - time (sec): 13.32 - samples/sec: 2754.22 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-25 11:27:15,785 epoch 5 - iter 308/773 - loss 0.02010956 - time (sec): 17.85 - samples/sec: 2752.40 - lr: 0.000019 - momentum: 0.000000
|
141 |
+
2023-10-25 11:27:20,238 epoch 5 - iter 385/773 - loss 0.02039984 - time (sec): 22.30 - samples/sec: 2718.24 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-10-25 11:27:24,677 epoch 5 - iter 462/773 - loss 0.02190141 - time (sec): 26.74 - samples/sec: 2745.65 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-25 11:27:28,819 epoch 5 - iter 539/773 - loss 0.02138656 - time (sec): 30.88 - samples/sec: 2776.01 - lr: 0.000018 - momentum: 0.000000
|
144 |
+
2023-10-25 11:27:32,991 epoch 5 - iter 616/773 - loss 0.02090922 - time (sec): 35.05 - samples/sec: 2800.73 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-10-25 11:27:37,188 epoch 5 - iter 693/773 - loss 0.02083139 - time (sec): 39.25 - samples/sec: 2813.48 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-25 11:27:41,590 epoch 5 - iter 770/773 - loss 0.01980612 - time (sec): 43.65 - samples/sec: 2839.77 - lr: 0.000017 - momentum: 0.000000
|
147 |
+
2023-10-25 11:27:41,748 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-25 11:27:41,748 EPOCH 5 done: loss 0.0198 - lr: 0.000017
|
149 |
+
2023-10-25 11:27:44,317 DEV : loss 0.10546855628490448 - f1-score (micro avg) 0.7653
|
150 |
+
2023-10-25 11:27:44,335 ----------------------------------------------------------------------------------------------------
|
151 |
+
2023-10-25 11:27:48,611 epoch 6 - iter 77/773 - loss 0.01097830 - time (sec): 4.27 - samples/sec: 2852.95 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-10-25 11:27:53,219 epoch 6 - iter 154/773 - loss 0.01069205 - time (sec): 8.88 - samples/sec: 2781.94 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2023-10-25 11:27:57,904 epoch 6 - iter 231/773 - loss 0.00999344 - time (sec): 13.57 - samples/sec: 2751.47 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-25 11:28:02,448 epoch 6 - iter 308/773 - loss 0.01106499 - time (sec): 18.11 - samples/sec: 2721.28 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-10-25 11:28:07,185 epoch 6 - iter 385/773 - loss 0.01289234 - time (sec): 22.85 - samples/sec: 2769.63 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2023-10-25 11:28:11,711 epoch 6 - iter 462/773 - loss 0.01300909 - time (sec): 27.38 - samples/sec: 2767.91 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-25 11:28:16,226 epoch 6 - iter 539/773 - loss 0.01390742 - time (sec): 31.89 - samples/sec: 2740.14 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-10-25 11:28:20,802 epoch 6 - iter 616/773 - loss 0.01367765 - time (sec): 36.47 - samples/sec: 2730.90 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2023-10-25 11:28:25,371 epoch 6 - iter 693/773 - loss 0.01407704 - time (sec): 41.03 - samples/sec: 2718.67 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-10-25 11:28:29,956 epoch 6 - iter 770/773 - loss 0.01382031 - time (sec): 45.62 - samples/sec: 2714.49 - lr: 0.000013 - momentum: 0.000000
|
161 |
+
2023-10-25 11:28:30,128 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-10-25 11:28:30,128 EPOCH 6 done: loss 0.0138 - lr: 0.000013
|
163 |
+
2023-10-25 11:28:33,108 DEV : loss 0.1092146635055542 - f1-score (micro avg) 0.7919
|
164 |
+
2023-10-25 11:28:33,124 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-10-25 11:28:37,466 epoch 7 - iter 77/773 - loss 0.00808285 - time (sec): 4.34 - samples/sec: 2808.41 - lr: 0.000013 - momentum: 0.000000
|
166 |
+
2023-10-25 11:28:41,713 epoch 7 - iter 154/773 - loss 0.01054920 - time (sec): 8.59 - samples/sec: 2892.61 - lr: 0.000013 - momentum: 0.000000
|
167 |
+
2023-10-25 11:28:45,847 epoch 7 - iter 231/773 - loss 0.00910599 - time (sec): 12.72 - samples/sec: 2943.80 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-10-25 11:28:50,141 epoch 7 - iter 308/773 - loss 0.00849477 - time (sec): 17.02 - samples/sec: 2918.19 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-10-25 11:28:54,420 epoch 7 - iter 385/773 - loss 0.00844130 - time (sec): 21.29 - samples/sec: 2882.76 - lr: 0.000012 - momentum: 0.000000
|
170 |
+
2023-10-25 11:28:58,725 epoch 7 - iter 462/773 - loss 0.00830111 - time (sec): 25.60 - samples/sec: 2908.43 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-10-25 11:29:03,175 epoch 7 - iter 539/773 - loss 0.01004841 - time (sec): 30.05 - samples/sec: 2876.33 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-10-25 11:29:07,818 epoch 7 - iter 616/773 - loss 0.00946287 - time (sec): 34.69 - samples/sec: 2831.29 - lr: 0.000011 - momentum: 0.000000
|
173 |
+
2023-10-25 11:29:12,320 epoch 7 - iter 693/773 - loss 0.00905604 - time (sec): 39.19 - samples/sec: 2834.21 - lr: 0.000010 - momentum: 0.000000
|
174 |
+
2023-10-25 11:29:16,815 epoch 7 - iter 770/773 - loss 0.00934767 - time (sec): 43.69 - samples/sec: 2835.04 - lr: 0.000010 - momentum: 0.000000
|
175 |
+
2023-10-25 11:29:16,982 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-25 11:29:16,983 EPOCH 7 done: loss 0.0093 - lr: 0.000010
|
177 |
+
2023-10-25 11:29:19,518 DEV : loss 0.1093023419380188 - f1-score (micro avg) 0.7848
|
178 |
+
2023-10-25 11:29:19,537 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-25 11:29:23,811 epoch 8 - iter 77/773 - loss 0.00671671 - time (sec): 4.27 - samples/sec: 2797.82 - lr: 0.000010 - momentum: 0.000000
|
180 |
+
2023-10-25 11:29:28,182 epoch 8 - iter 154/773 - loss 0.00697096 - time (sec): 8.64 - samples/sec: 2893.67 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-10-25 11:29:32,549 epoch 8 - iter 231/773 - loss 0.00623998 - time (sec): 13.01 - samples/sec: 2896.37 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-10-25 11:29:36,864 epoch 8 - iter 308/773 - loss 0.00599104 - time (sec): 17.33 - samples/sec: 2900.18 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-10-25 11:29:41,202 epoch 8 - iter 385/773 - loss 0.00649897 - time (sec): 21.66 - samples/sec: 2890.66 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-10-25 11:29:45,564 epoch 8 - iter 462/773 - loss 0.00718124 - time (sec): 26.03 - samples/sec: 2848.14 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-10-25 11:29:49,995 epoch 8 - iter 539/773 - loss 0.00668630 - time (sec): 30.46 - samples/sec: 2846.89 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-10-25 11:29:54,430 epoch 8 - iter 616/773 - loss 0.00648273 - time (sec): 34.89 - samples/sec: 2835.96 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-10-25 11:29:58,956 epoch 8 - iter 693/773 - loss 0.00657413 - time (sec): 39.42 - samples/sec: 2819.74 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-10-25 11:30:03,306 epoch 8 - iter 770/773 - loss 0.00648703 - time (sec): 43.77 - samples/sec: 2824.90 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-10-25 11:30:03,477 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-25 11:30:03,477 EPOCH 8 done: loss 0.0065 - lr: 0.000007
|
191 |
+
2023-10-25 11:30:06,018 DEV : loss 0.12693718075752258 - f1-score (micro avg) 0.7553
|
192 |
+
2023-10-25 11:30:06,034 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-25 11:30:10,578 epoch 9 - iter 77/773 - loss 0.00163409 - time (sec): 4.54 - samples/sec: 2700.63 - lr: 0.000006 - momentum: 0.000000
|
194 |
+
2023-10-25 11:30:15,192 epoch 9 - iter 154/773 - loss 0.00370643 - time (sec): 9.16 - samples/sec: 2665.87 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-10-25 11:30:20,010 epoch 9 - iter 231/773 - loss 0.00354968 - time (sec): 13.97 - samples/sec: 2615.36 - lr: 0.000006 - momentum: 0.000000
|
196 |
+
2023-10-25 11:30:24,754 epoch 9 - iter 308/773 - loss 0.00327572 - time (sec): 18.72 - samples/sec: 2612.04 - lr: 0.000005 - momentum: 0.000000
|
197 |
+
2023-10-25 11:30:29,255 epoch 9 - iter 385/773 - loss 0.00341277 - time (sec): 23.22 - samples/sec: 2684.08 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-10-25 11:30:33,495 epoch 9 - iter 462/773 - loss 0.00316797 - time (sec): 27.46 - samples/sec: 2715.67 - lr: 0.000005 - momentum: 0.000000
|
199 |
+
2023-10-25 11:30:37,782 epoch 9 - iter 539/773 - loss 0.00347581 - time (sec): 31.75 - samples/sec: 2734.77 - lr: 0.000004 - momentum: 0.000000
|
200 |
+
2023-10-25 11:30:42,176 epoch 9 - iter 616/773 - loss 0.00395273 - time (sec): 36.14 - samples/sec: 2760.41 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-10-25 11:30:46,387 epoch 9 - iter 693/773 - loss 0.00399888 - time (sec): 40.35 - samples/sec: 2786.00 - lr: 0.000004 - momentum: 0.000000
|
202 |
+
2023-10-25 11:30:50,631 epoch 9 - iter 770/773 - loss 0.00454743 - time (sec): 44.59 - samples/sec: 2777.36 - lr: 0.000003 - momentum: 0.000000
|
203 |
+
2023-10-25 11:30:50,808 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-10-25 11:30:50,808 EPOCH 9 done: loss 0.0045 - lr: 0.000003
|
205 |
+
2023-10-25 11:30:53,316 DEV : loss 0.12672311067581177 - f1-score (micro avg) 0.7758
|
206 |
+
2023-10-25 11:30:53,337 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-25 11:30:58,434 epoch 10 - iter 77/773 - loss 0.00097966 - time (sec): 5.10 - samples/sec: 2687.48 - lr: 0.000003 - momentum: 0.000000
|
208 |
+
2023-10-25 11:31:03,219 epoch 10 - iter 154/773 - loss 0.00096282 - time (sec): 9.88 - samples/sec: 2580.96 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-25 11:31:07,705 epoch 10 - iter 231/773 - loss 0.00100765 - time (sec): 14.37 - samples/sec: 2665.67 - lr: 0.000002 - momentum: 0.000000
|
210 |
+
2023-10-25 11:31:12,108 epoch 10 - iter 308/773 - loss 0.00103783 - time (sec): 18.77 - samples/sec: 2699.24 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-25 11:31:16,706 epoch 10 - iter 385/773 - loss 0.00112711 - time (sec): 23.37 - samples/sec: 2721.46 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-25 11:31:21,631 epoch 10 - iter 462/773 - loss 0.00170921 - time (sec): 28.29 - samples/sec: 2684.80 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-25 11:31:25,883 epoch 10 - iter 539/773 - loss 0.00217353 - time (sec): 32.54 - samples/sec: 2697.81 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-25 11:31:30,157 epoch 10 - iter 616/773 - loss 0.00225198 - time (sec): 36.82 - samples/sec: 2708.18 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-25 11:31:34,532 epoch 10 - iter 693/773 - loss 0.00229876 - time (sec): 41.19 - samples/sec: 2717.64 - lr: 0.000000 - momentum: 0.000000
|
216 |
+
2023-10-25 11:31:38,969 epoch 10 - iter 770/773 - loss 0.00247570 - time (sec): 45.63 - samples/sec: 2715.19 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-25 11:31:39,133 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-25 11:31:39,134 EPOCH 10 done: loss 0.0026 - lr: 0.000000
|
219 |
+
2023-10-25 11:31:42,020 DEV : loss 0.13155733048915863 - f1-score (micro avg) 0.7645
|
220 |
+
2023-10-25 11:31:42,974 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-25 11:31:42,975 Loading model from best epoch ...
|
222 |
+
2023-10-25 11:31:44,802 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET
|
223 |
+
2023-10-25 11:31:53,488
|
224 |
+
Results:
|
225 |
+
- F-score (micro) 0.7909
|
226 |
+
- F-score (macro) 0.693
|
227 |
+
- Accuracy 0.67
|
228 |
+
|
229 |
+
By class:
|
230 |
+
precision recall f1-score support
|
231 |
+
|
232 |
+
LOC 0.8082 0.8552 0.8310 946
|
233 |
+
BUILDING 0.6884 0.5135 0.5882 185
|
234 |
+
STREET 0.7805 0.5714 0.6598 56
|
235 |
+
|
236 |
+
micro avg 0.7932 0.7885 0.7909 1187
|
237 |
+
macro avg 0.7590 0.6467 0.6930 1187
|
238 |
+
weighted avg 0.7882 0.7885 0.7851 1187
|
239 |
+
|
240 |
+
2023-10-25 11:31:53,489 ----------------------------------------------------------------------------------------------------
|