stefan-it's picture
readme: update TensorBoard info
e436809
|
raw
history blame
4.67 kB
---
language: fi
license: mit
tags:
- flair
- token-classification
- sequence-tagger-model
base_model: dbmdz/bert-base-historic-multilingual-cased
widget:
- text: Rooseveltin sihteeri ilmoittaa perättö - mäksi tiedon , että Rooseveltia olisi
kehotettu käymään Englannissa , Saksassa ja Venäjällä puhumassa San Franciscon
näyttelyn puolesta .
---
# Fine-tuned Flair Model on Finnish NewsEye NER Dataset (HIPE-2022)
This Flair model was fine-tuned on the
[Finnish NewsEye](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-newseye.md)
NER Dataset using hmBERT as backbone LM.
The NewsEye dataset is comprised of diachronic historical newspaper material published between 1850 and 1950
in French, German, Finnish, and Swedish.
More information can be found [here](https://dl.acm.org/doi/abs/10.1145/3404835.3463255).
The following NEs were annotated: `PER`, `LOC`, `ORG` and `HumanProd`.
# Results
We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
* Batch Sizes: `[8, 4]`
* Learning Rates: `[3e-05, 5e-05]`
And report micro F1-score on development set:
| Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. |
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|
| bs4-e10-lr3e-05 | [0.7669][1] | [0.8009][2] | [0.7722][3] | [0.7653][4] | [0.7579][5] | 77.26 ± 1.49 |
| bs8-e10-lr5e-05 | [0.7837][6] | [0.7447][7] | [0.778][8] | [0.7702][9] | [0.7666][10] | 76.86 ± 1.34 |
| bs4-e10-lr5e-05 | [0.7856][11] | [0.7722][12] | [0.7484][13] | [0.7619][14] | [0.7556][15] | 76.47 ± 1.3 |
| bs8-e10-lr3e-05 | [0.7669][16] | [0.7436][17] | [0.766][18] | [0.7716][19] | [0.7328][20] | 75.62 ± 1.52 |
[1]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[2]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[3]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[4]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[5]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[6]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[7]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[8]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[9]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[10]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[11]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[12]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[13]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[14]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[15]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[16]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[17]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[18]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[19]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[20]: https://hf.co/hmbench/hmbench-newseye-fi-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
The [training log](training.log) and TensorBoard logs (only for hmByT5 and hmTEAMS based models) are also uploaded to the model hub.
More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
# Acknowledgements
We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
Many Thanks for providing access to the TPUs ❤️