|
2023-10-13 15:42:35,866 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:42:35,867 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=21, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-13 15:42:35,867 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:42:35,867 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences |
|
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator |
|
2023-10-13 15:42:35,867 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:42:35,867 Train: 5901 sentences |
|
2023-10-13 15:42:35,867 (train_with_dev=False, train_with_test=False) |
|
2023-10-13 15:42:35,867 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:42:35,867 Training Params: |
|
2023-10-13 15:42:35,867 - learning_rate: "5e-05" |
|
2023-10-13 15:42:35,867 - mini_batch_size: "4" |
|
2023-10-13 15:42:35,868 - max_epochs: "10" |
|
2023-10-13 15:42:35,868 - shuffle: "True" |
|
2023-10-13 15:42:35,868 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:42:35,868 Plugins: |
|
2023-10-13 15:42:35,868 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-13 15:42:35,868 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:42:35,868 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-13 15:42:35,868 - metric: "('micro avg', 'f1-score')" |
|
2023-10-13 15:42:35,868 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:42:35,868 Computation: |
|
2023-10-13 15:42:35,868 - compute on device: cuda:0 |
|
2023-10-13 15:42:35,868 - embedding storage: none |
|
2023-10-13 15:42:35,868 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:42:35,868 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1" |
|
2023-10-13 15:42:35,868 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:42:35,868 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:42:42,852 epoch 1 - iter 147/1476 - loss 2.30028384 - time (sec): 6.98 - samples/sec: 2417.10 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-13 15:42:49,682 epoch 1 - iter 294/1476 - loss 1.45013254 - time (sec): 13.81 - samples/sec: 2399.46 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-13 15:42:57,042 epoch 1 - iter 441/1476 - loss 1.06928097 - time (sec): 21.17 - samples/sec: 2472.20 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 15:43:03,830 epoch 1 - iter 588/1476 - loss 0.89478293 - time (sec): 27.96 - samples/sec: 2410.19 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-13 15:43:10,679 epoch 1 - iter 735/1476 - loss 0.77703571 - time (sec): 34.81 - samples/sec: 2401.38 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-13 15:43:17,429 epoch 1 - iter 882/1476 - loss 0.69040845 - time (sec): 41.56 - samples/sec: 2383.42 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-13 15:43:24,222 epoch 1 - iter 1029/1476 - loss 0.62755418 - time (sec): 48.35 - samples/sec: 2364.76 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-13 15:43:30,951 epoch 1 - iter 1176/1476 - loss 0.57577336 - time (sec): 55.08 - samples/sec: 2354.56 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-13 15:43:38,279 epoch 1 - iter 1323/1476 - loss 0.52275812 - time (sec): 62.41 - samples/sec: 2389.60 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-13 15:43:45,281 epoch 1 - iter 1470/1476 - loss 0.48888637 - time (sec): 69.41 - samples/sec: 2388.74 - lr: 0.000050 - momentum: 0.000000 |
|
2023-10-13 15:43:45,558 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:43:45,558 EPOCH 1 done: loss 0.4876 - lr: 0.000050 |
|
2023-10-13 15:43:51,735 DEV : loss 0.13950972259044647 - f1-score (micro avg) 0.6846 |
|
2023-10-13 15:43:51,763 saving best model |
|
2023-10-13 15:43:52,181 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:43:59,160 epoch 2 - iter 147/1476 - loss 0.15312363 - time (sec): 6.98 - samples/sec: 2436.22 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-13 15:44:05,796 epoch 2 - iter 294/1476 - loss 0.14515788 - time (sec): 13.61 - samples/sec: 2295.82 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-13 15:44:12,599 epoch 2 - iter 441/1476 - loss 0.14926136 - time (sec): 20.42 - samples/sec: 2289.42 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-13 15:44:19,464 epoch 2 - iter 588/1476 - loss 0.14665798 - time (sec): 27.28 - samples/sec: 2311.85 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-13 15:44:26,111 epoch 2 - iter 735/1476 - loss 0.14371952 - time (sec): 33.93 - samples/sec: 2309.91 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-13 15:44:34,075 epoch 2 - iter 882/1476 - loss 0.14402450 - time (sec): 41.89 - samples/sec: 2392.34 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-13 15:44:41,076 epoch 2 - iter 1029/1476 - loss 0.14095397 - time (sec): 48.89 - samples/sec: 2394.34 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-13 15:44:47,968 epoch 2 - iter 1176/1476 - loss 0.14022068 - time (sec): 55.79 - samples/sec: 2387.41 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-13 15:44:54,873 epoch 2 - iter 1323/1476 - loss 0.13964413 - time (sec): 62.69 - samples/sec: 2391.33 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-13 15:45:01,710 epoch 2 - iter 1470/1476 - loss 0.13667497 - time (sec): 69.53 - samples/sec: 2385.92 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-13 15:45:01,973 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:45:01,974 EPOCH 2 done: loss 0.1366 - lr: 0.000044 |
|
2023-10-13 15:45:13,154 DEV : loss 0.14815327525138855 - f1-score (micro avg) 0.783 |
|
2023-10-13 15:45:13,184 saving best model |
|
2023-10-13 15:45:13,775 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:45:20,684 epoch 3 - iter 147/1476 - loss 0.08626971 - time (sec): 6.90 - samples/sec: 2220.34 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-13 15:45:27,452 epoch 3 - iter 294/1476 - loss 0.08510510 - time (sec): 13.67 - samples/sec: 2295.99 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-13 15:45:34,356 epoch 3 - iter 441/1476 - loss 0.09017739 - time (sec): 20.58 - samples/sec: 2360.38 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-13 15:45:41,425 epoch 3 - iter 588/1476 - loss 0.09251949 - time (sec): 27.64 - samples/sec: 2381.15 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-13 15:45:48,404 epoch 3 - iter 735/1476 - loss 0.09530762 - time (sec): 34.62 - samples/sec: 2408.54 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-13 15:45:54,862 epoch 3 - iter 882/1476 - loss 0.09482173 - time (sec): 41.08 - samples/sec: 2397.41 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-13 15:46:01,516 epoch 3 - iter 1029/1476 - loss 0.09283997 - time (sec): 47.74 - samples/sec: 2417.28 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-13 15:46:08,514 epoch 3 - iter 1176/1476 - loss 0.09432800 - time (sec): 54.73 - samples/sec: 2414.61 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-13 15:46:15,114 epoch 3 - iter 1323/1476 - loss 0.09378249 - time (sec): 61.33 - samples/sec: 2424.67 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-13 15:46:22,293 epoch 3 - iter 1470/1476 - loss 0.09168940 - time (sec): 68.51 - samples/sec: 2422.02 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-13 15:46:22,555 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:46:22,556 EPOCH 3 done: loss 0.0916 - lr: 0.000039 |
|
2023-10-13 15:46:33,729 DEV : loss 0.16625124216079712 - f1-score (micro avg) 0.7842 |
|
2023-10-13 15:46:33,759 saving best model |
|
2023-10-13 15:46:34,290 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:46:40,939 epoch 4 - iter 147/1476 - loss 0.05685033 - time (sec): 6.65 - samples/sec: 2384.08 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-13 15:46:48,069 epoch 4 - iter 294/1476 - loss 0.06479773 - time (sec): 13.78 - samples/sec: 2436.98 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-13 15:46:55,648 epoch 4 - iter 441/1476 - loss 0.06082232 - time (sec): 21.35 - samples/sec: 2464.05 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-13 15:47:02,562 epoch 4 - iter 588/1476 - loss 0.06505374 - time (sec): 28.27 - samples/sec: 2398.45 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-13 15:47:09,655 epoch 4 - iter 735/1476 - loss 0.06490679 - time (sec): 35.36 - samples/sec: 2358.79 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-13 15:47:16,482 epoch 4 - iter 882/1476 - loss 0.06350270 - time (sec): 42.19 - samples/sec: 2323.62 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-13 15:47:23,844 epoch 4 - iter 1029/1476 - loss 0.06399013 - time (sec): 49.55 - samples/sec: 2342.65 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-13 15:47:30,580 epoch 4 - iter 1176/1476 - loss 0.06430831 - time (sec): 56.29 - samples/sec: 2330.72 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-13 15:47:37,629 epoch 4 - iter 1323/1476 - loss 0.06572771 - time (sec): 63.33 - samples/sec: 2354.52 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-13 15:47:44,586 epoch 4 - iter 1470/1476 - loss 0.06583572 - time (sec): 70.29 - samples/sec: 2359.14 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-13 15:47:44,847 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:47:44,848 EPOCH 4 done: loss 0.0658 - lr: 0.000033 |
|
2023-10-13 15:47:56,082 DEV : loss 0.17630523443222046 - f1-score (micro avg) 0.8153 |
|
2023-10-13 15:47:56,112 saving best model |
|
2023-10-13 15:47:56,711 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:48:03,253 epoch 5 - iter 147/1476 - loss 0.04485170 - time (sec): 6.54 - samples/sec: 2355.16 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-13 15:48:09,999 epoch 5 - iter 294/1476 - loss 0.03902816 - time (sec): 13.28 - samples/sec: 2369.02 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-13 15:48:17,002 epoch 5 - iter 441/1476 - loss 0.04504258 - time (sec): 20.29 - samples/sec: 2406.17 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-13 15:48:23,884 epoch 5 - iter 588/1476 - loss 0.04251002 - time (sec): 27.17 - samples/sec: 2378.67 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-13 15:48:31,087 epoch 5 - iter 735/1476 - loss 0.04220286 - time (sec): 34.37 - samples/sec: 2391.39 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-13 15:48:38,154 epoch 5 - iter 882/1476 - loss 0.04528667 - time (sec): 41.44 - samples/sec: 2388.13 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-13 15:48:45,300 epoch 5 - iter 1029/1476 - loss 0.04637233 - time (sec): 48.59 - samples/sec: 2356.76 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-13 15:48:52,720 epoch 5 - iter 1176/1476 - loss 0.04767054 - time (sec): 56.01 - samples/sec: 2372.28 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-13 15:48:59,761 epoch 5 - iter 1323/1476 - loss 0.04742459 - time (sec): 63.05 - samples/sec: 2367.60 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-13 15:49:06,688 epoch 5 - iter 1470/1476 - loss 0.04806456 - time (sec): 69.97 - samples/sec: 2371.06 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-13 15:49:06,946 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:49:06,947 EPOCH 5 done: loss 0.0484 - lr: 0.000028 |
|
2023-10-13 15:49:18,117 DEV : loss 0.18819278478622437 - f1-score (micro avg) 0.7999 |
|
2023-10-13 15:49:18,147 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:49:25,047 epoch 6 - iter 147/1476 - loss 0.03631651 - time (sec): 6.90 - samples/sec: 2179.78 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 15:49:31,878 epoch 6 - iter 294/1476 - loss 0.03341746 - time (sec): 13.73 - samples/sec: 2233.74 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 15:49:39,202 epoch 6 - iter 441/1476 - loss 0.03106010 - time (sec): 21.05 - samples/sec: 2342.54 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-13 15:49:46,275 epoch 6 - iter 588/1476 - loss 0.03516578 - time (sec): 28.13 - samples/sec: 2336.61 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-13 15:49:53,144 epoch 6 - iter 735/1476 - loss 0.03483987 - time (sec): 35.00 - samples/sec: 2348.33 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-13 15:50:00,155 epoch 6 - iter 882/1476 - loss 0.03313512 - time (sec): 42.01 - samples/sec: 2372.38 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 15:50:06,939 epoch 6 - iter 1029/1476 - loss 0.03286769 - time (sec): 48.79 - samples/sec: 2353.00 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 15:50:13,772 epoch 6 - iter 1176/1476 - loss 0.03254763 - time (sec): 55.62 - samples/sec: 2356.11 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-13 15:50:21,043 epoch 6 - iter 1323/1476 - loss 0.03345823 - time (sec): 62.89 - samples/sec: 2387.16 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-13 15:50:27,847 epoch 6 - iter 1470/1476 - loss 0.03287175 - time (sec): 69.70 - samples/sec: 2380.16 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-13 15:50:28,118 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:50:28,119 EPOCH 6 done: loss 0.0328 - lr: 0.000022 |
|
2023-10-13 15:50:39,277 DEV : loss 0.20484893023967743 - f1-score (micro avg) 0.8029 |
|
2023-10-13 15:50:39,307 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:50:46,072 epoch 7 - iter 147/1476 - loss 0.01775270 - time (sec): 6.76 - samples/sec: 2267.31 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-13 15:50:53,821 epoch 7 - iter 294/1476 - loss 0.02118488 - time (sec): 14.51 - samples/sec: 2336.41 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 15:51:00,455 epoch 7 - iter 441/1476 - loss 0.02237123 - time (sec): 21.15 - samples/sec: 2323.11 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 15:51:07,535 epoch 7 - iter 588/1476 - loss 0.02143611 - time (sec): 28.23 - samples/sec: 2322.19 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-13 15:51:14,428 epoch 7 - iter 735/1476 - loss 0.02320718 - time (sec): 35.12 - samples/sec: 2341.16 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-13 15:51:21,513 epoch 7 - iter 882/1476 - loss 0.02422687 - time (sec): 42.21 - samples/sec: 2384.20 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-13 15:51:28,587 epoch 7 - iter 1029/1476 - loss 0.02343024 - time (sec): 49.28 - samples/sec: 2402.37 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 15:51:35,674 epoch 7 - iter 1176/1476 - loss 0.02306815 - time (sec): 56.37 - samples/sec: 2392.98 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 15:51:42,416 epoch 7 - iter 1323/1476 - loss 0.02322261 - time (sec): 63.11 - samples/sec: 2374.09 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-13 15:51:49,345 epoch 7 - iter 1470/1476 - loss 0.02302954 - time (sec): 70.04 - samples/sec: 2368.47 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-13 15:51:49,612 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:51:49,612 EPOCH 7 done: loss 0.0231 - lr: 0.000017 |
|
2023-10-13 15:52:00,780 DEV : loss 0.2176404744386673 - f1-score (micro avg) 0.8104 |
|
2023-10-13 15:52:00,810 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:52:07,878 epoch 8 - iter 147/1476 - loss 0.01220283 - time (sec): 7.07 - samples/sec: 2310.70 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-13 15:52:14,683 epoch 8 - iter 294/1476 - loss 0.01477755 - time (sec): 13.87 - samples/sec: 2316.37 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-13 15:52:21,717 epoch 8 - iter 441/1476 - loss 0.01557002 - time (sec): 20.91 - samples/sec: 2387.69 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 15:52:28,637 epoch 8 - iter 588/1476 - loss 0.01728477 - time (sec): 27.83 - samples/sec: 2368.74 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-13 15:52:35,625 epoch 8 - iter 735/1476 - loss 0.01772118 - time (sec): 34.81 - samples/sec: 2350.82 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-13 15:52:42,709 epoch 8 - iter 882/1476 - loss 0.01840414 - time (sec): 41.90 - samples/sec: 2332.60 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-13 15:52:49,619 epoch 8 - iter 1029/1476 - loss 0.01749539 - time (sec): 48.81 - samples/sec: 2327.72 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-13 15:52:57,024 epoch 8 - iter 1176/1476 - loss 0.01800568 - time (sec): 56.21 - samples/sec: 2344.29 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 15:53:03,895 epoch 8 - iter 1323/1476 - loss 0.01708246 - time (sec): 63.08 - samples/sec: 2351.96 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 15:53:10,882 epoch 8 - iter 1470/1476 - loss 0.01733501 - time (sec): 70.07 - samples/sec: 2368.38 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-13 15:53:11,151 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:53:11,151 EPOCH 8 done: loss 0.0173 - lr: 0.000011 |
|
2023-10-13 15:53:22,272 DEV : loss 0.20916695892810822 - f1-score (micro avg) 0.8181 |
|
2023-10-13 15:53:22,301 saving best model |
|
2023-10-13 15:53:22,822 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:53:29,893 epoch 9 - iter 147/1476 - loss 0.01635506 - time (sec): 7.07 - samples/sec: 2461.72 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-13 15:53:36,767 epoch 9 - iter 294/1476 - loss 0.01655047 - time (sec): 13.94 - samples/sec: 2426.64 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-13 15:53:43,754 epoch 9 - iter 441/1476 - loss 0.01517177 - time (sec): 20.93 - samples/sec: 2367.10 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 15:53:50,701 epoch 9 - iter 588/1476 - loss 0.01363129 - time (sec): 27.88 - samples/sec: 2364.14 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 15:53:57,583 epoch 9 - iter 735/1476 - loss 0.01340167 - time (sec): 34.76 - samples/sec: 2360.92 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-13 15:54:04,370 epoch 9 - iter 882/1476 - loss 0.01292839 - time (sec): 41.54 - samples/sec: 2347.88 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-13 15:54:11,324 epoch 9 - iter 1029/1476 - loss 0.01181704 - time (sec): 48.50 - samples/sec: 2370.28 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-13 15:54:18,449 epoch 9 - iter 1176/1476 - loss 0.01179880 - time (sec): 55.62 - samples/sec: 2378.75 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-13 15:54:25,296 epoch 9 - iter 1323/1476 - loss 0.01152101 - time (sec): 62.47 - samples/sec: 2384.12 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 15:54:32,279 epoch 9 - iter 1470/1476 - loss 0.01152718 - time (sec): 69.45 - samples/sec: 2389.38 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 15:54:32,541 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:54:32,541 EPOCH 9 done: loss 0.0115 - lr: 0.000006 |
|
2023-10-13 15:54:43,751 DEV : loss 0.22271640598773956 - f1-score (micro avg) 0.8152 |
|
2023-10-13 15:54:43,780 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:54:50,626 epoch 10 - iter 147/1476 - loss 0.01146130 - time (sec): 6.84 - samples/sec: 2359.28 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-13 15:54:58,158 epoch 10 - iter 294/1476 - loss 0.00823611 - time (sec): 14.38 - samples/sec: 2480.56 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-13 15:55:05,151 epoch 10 - iter 441/1476 - loss 0.00776873 - time (sec): 21.37 - samples/sec: 2419.29 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-13 15:55:12,220 epoch 10 - iter 588/1476 - loss 0.00660613 - time (sec): 28.44 - samples/sec: 2368.38 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 15:55:18,963 epoch 10 - iter 735/1476 - loss 0.00628384 - time (sec): 35.18 - samples/sec: 2351.18 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 15:55:25,778 epoch 10 - iter 882/1476 - loss 0.00654294 - time (sec): 42.00 - samples/sec: 2333.14 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-13 15:55:33,071 epoch 10 - iter 1029/1476 - loss 0.00618452 - time (sec): 49.29 - samples/sec: 2340.88 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-13 15:55:40,251 epoch 10 - iter 1176/1476 - loss 0.00649196 - time (sec): 56.47 - samples/sec: 2335.05 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-13 15:55:47,188 epoch 10 - iter 1323/1476 - loss 0.00610162 - time (sec): 63.41 - samples/sec: 2332.22 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-13 15:55:54,348 epoch 10 - iter 1470/1476 - loss 0.00601101 - time (sec): 70.57 - samples/sec: 2353.06 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-13 15:55:54,607 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:55:54,607 EPOCH 10 done: loss 0.0060 - lr: 0.000000 |
|
2023-10-13 15:56:05,754 DEV : loss 0.22833691537380219 - f1-score (micro avg) 0.8171 |
|
2023-10-13 15:56:06,208 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:56:06,209 Loading model from best epoch ... |
|
2023-10-13 15:56:07,748 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod |
|
2023-10-13 15:56:13,701 |
|
Results: |
|
- F-score (micro) 0.7761 |
|
- F-score (macro) 0.6771 |
|
- Accuracy 0.6563 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.8328 0.8590 0.8457 858 |
|
pers 0.7347 0.7840 0.7586 537 |
|
org 0.5094 0.6136 0.5567 132 |
|
time 0.5397 0.6296 0.5812 54 |
|
prod 0.6852 0.6066 0.6435 61 |
|
|
|
micro avg 0.7555 0.7978 0.7761 1642 |
|
macro avg 0.6604 0.6986 0.6771 1642 |
|
weighted avg 0.7596 0.7978 0.7777 1642 |
|
|
|
2023-10-13 15:56:13,701 ---------------------------------------------------------------------------------------------------- |
|
|