Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +242 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:631b45bd8f9c6866dba541f08e6bcdb6c56f0fbc3c8fd6405170a7a335118d41
|
3 |
+
size 443335879
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 15:43:51 0.0000 0.4876 0.1395 0.6353 0.7423 0.6846 0.5562
|
3 |
+
2 15:45:13 0.0000 0.1366 0.1482 0.7718 0.7944 0.7830 0.6723
|
4 |
+
3 15:46:33 0.0000 0.0916 0.1663 0.7827 0.7858 0.7842 0.6779
|
5 |
+
4 15:47:56 0.0000 0.0658 0.1763 0.8139 0.8167 0.8153 0.7123
|
6 |
+
5 15:49:18 0.0000 0.0484 0.1882 0.7853 0.8150 0.7999 0.6914
|
7 |
+
6 15:50:39 0.0000 0.0328 0.2048 0.7843 0.8225 0.8029 0.7005
|
8 |
+
7 15:52:00 0.0000 0.0231 0.2176 0.7987 0.8225 0.8104 0.7116
|
9 |
+
8 15:53:22 0.0000 0.0173 0.2092 0.8034 0.8333 0.8181 0.7217
|
10 |
+
9 15:54:43 0.0000 0.0115 0.2227 0.8093 0.8213 0.8152 0.7177
|
11 |
+
10 15:56:05 0.0000 0.0060 0.2283 0.8091 0.8253 0.8171 0.7191
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-13 15:42:35,866 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-13 15:42:35,867 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-13 15:42:35,867 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-13 15:42:35,867 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
53 |
+
2023-10-13 15:42:35,867 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-13 15:42:35,867 Train: 5901 sentences
|
55 |
+
2023-10-13 15:42:35,867 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-13 15:42:35,867 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-13 15:42:35,867 Training Params:
|
58 |
+
2023-10-13 15:42:35,867 - learning_rate: "5e-05"
|
59 |
+
2023-10-13 15:42:35,867 - mini_batch_size: "4"
|
60 |
+
2023-10-13 15:42:35,868 - max_epochs: "10"
|
61 |
+
2023-10-13 15:42:35,868 - shuffle: "True"
|
62 |
+
2023-10-13 15:42:35,868 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-13 15:42:35,868 Plugins:
|
64 |
+
2023-10-13 15:42:35,868 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-13 15:42:35,868 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-13 15:42:35,868 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-13 15:42:35,868 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-13 15:42:35,868 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-13 15:42:35,868 Computation:
|
70 |
+
2023-10-13 15:42:35,868 - compute on device: cuda:0
|
71 |
+
2023-10-13 15:42:35,868 - embedding storage: none
|
72 |
+
2023-10-13 15:42:35,868 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-13 15:42:35,868 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
|
74 |
+
2023-10-13 15:42:35,868 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-13 15:42:35,868 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-13 15:42:42,852 epoch 1 - iter 147/1476 - loss 2.30028384 - time (sec): 6.98 - samples/sec: 2417.10 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-10-13 15:42:49,682 epoch 1 - iter 294/1476 - loss 1.45013254 - time (sec): 13.81 - samples/sec: 2399.46 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-10-13 15:42:57,042 epoch 1 - iter 441/1476 - loss 1.06928097 - time (sec): 21.17 - samples/sec: 2472.20 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-13 15:43:03,830 epoch 1 - iter 588/1476 - loss 0.89478293 - time (sec): 27.96 - samples/sec: 2410.19 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-10-13 15:43:10,679 epoch 1 - iter 735/1476 - loss 0.77703571 - time (sec): 34.81 - samples/sec: 2401.38 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-10-13 15:43:17,429 epoch 1 - iter 882/1476 - loss 0.69040845 - time (sec): 41.56 - samples/sec: 2383.42 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-10-13 15:43:24,222 epoch 1 - iter 1029/1476 - loss 0.62755418 - time (sec): 48.35 - samples/sec: 2364.76 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-10-13 15:43:30,951 epoch 1 - iter 1176/1476 - loss 0.57577336 - time (sec): 55.08 - samples/sec: 2354.56 - lr: 0.000040 - momentum: 0.000000
|
84 |
+
2023-10-13 15:43:38,279 epoch 1 - iter 1323/1476 - loss 0.52275812 - time (sec): 62.41 - samples/sec: 2389.60 - lr: 0.000045 - momentum: 0.000000
|
85 |
+
2023-10-13 15:43:45,281 epoch 1 - iter 1470/1476 - loss 0.48888637 - time (sec): 69.41 - samples/sec: 2388.74 - lr: 0.000050 - momentum: 0.000000
|
86 |
+
2023-10-13 15:43:45,558 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-13 15:43:45,558 EPOCH 1 done: loss 0.4876 - lr: 0.000050
|
88 |
+
2023-10-13 15:43:51,735 DEV : loss 0.13950972259044647 - f1-score (micro avg) 0.6846
|
89 |
+
2023-10-13 15:43:51,763 saving best model
|
90 |
+
2023-10-13 15:43:52,181 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-13 15:43:59,160 epoch 2 - iter 147/1476 - loss 0.15312363 - time (sec): 6.98 - samples/sec: 2436.22 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-10-13 15:44:05,796 epoch 2 - iter 294/1476 - loss 0.14515788 - time (sec): 13.61 - samples/sec: 2295.82 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-13 15:44:12,599 epoch 2 - iter 441/1476 - loss 0.14926136 - time (sec): 20.42 - samples/sec: 2289.42 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-10-13 15:44:19,464 epoch 2 - iter 588/1476 - loss 0.14665798 - time (sec): 27.28 - samples/sec: 2311.85 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-13 15:44:26,111 epoch 2 - iter 735/1476 - loss 0.14371952 - time (sec): 33.93 - samples/sec: 2309.91 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-10-13 15:44:34,075 epoch 2 - iter 882/1476 - loss 0.14402450 - time (sec): 41.89 - samples/sec: 2392.34 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-13 15:44:41,076 epoch 2 - iter 1029/1476 - loss 0.14095397 - time (sec): 48.89 - samples/sec: 2394.34 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-10-13 15:44:47,968 epoch 2 - iter 1176/1476 - loss 0.14022068 - time (sec): 55.79 - samples/sec: 2387.41 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-13 15:44:54,873 epoch 2 - iter 1323/1476 - loss 0.13964413 - time (sec): 62.69 - samples/sec: 2391.33 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-10-13 15:45:01,710 epoch 2 - iter 1470/1476 - loss 0.13667497 - time (sec): 69.53 - samples/sec: 2385.92 - lr: 0.000044 - momentum: 0.000000
|
101 |
+
2023-10-13 15:45:01,973 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-13 15:45:01,974 EPOCH 2 done: loss 0.1366 - lr: 0.000044
|
103 |
+
2023-10-13 15:45:13,154 DEV : loss 0.14815327525138855 - f1-score (micro avg) 0.783
|
104 |
+
2023-10-13 15:45:13,184 saving best model
|
105 |
+
2023-10-13 15:45:13,775 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-13 15:45:20,684 epoch 3 - iter 147/1476 - loss 0.08626971 - time (sec): 6.90 - samples/sec: 2220.34 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-10-13 15:45:27,452 epoch 3 - iter 294/1476 - loss 0.08510510 - time (sec): 13.67 - samples/sec: 2295.99 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-10-13 15:45:34,356 epoch 3 - iter 441/1476 - loss 0.09017739 - time (sec): 20.58 - samples/sec: 2360.38 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-13 15:45:41,425 epoch 3 - iter 588/1476 - loss 0.09251949 - time (sec): 27.64 - samples/sec: 2381.15 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-10-13 15:45:48,404 epoch 3 - iter 735/1476 - loss 0.09530762 - time (sec): 34.62 - samples/sec: 2408.54 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-13 15:45:54,862 epoch 3 - iter 882/1476 - loss 0.09482173 - time (sec): 41.08 - samples/sec: 2397.41 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-10-13 15:46:01,516 epoch 3 - iter 1029/1476 - loss 0.09283997 - time (sec): 47.74 - samples/sec: 2417.28 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-13 15:46:08,514 epoch 3 - iter 1176/1476 - loss 0.09432800 - time (sec): 54.73 - samples/sec: 2414.61 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-10-13 15:46:15,114 epoch 3 - iter 1323/1476 - loss 0.09378249 - time (sec): 61.33 - samples/sec: 2424.67 - lr: 0.000039 - momentum: 0.000000
|
115 |
+
2023-10-13 15:46:22,293 epoch 3 - iter 1470/1476 - loss 0.09168940 - time (sec): 68.51 - samples/sec: 2422.02 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-13 15:46:22,555 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-13 15:46:22,556 EPOCH 3 done: loss 0.0916 - lr: 0.000039
|
118 |
+
2023-10-13 15:46:33,729 DEV : loss 0.16625124216079712 - f1-score (micro avg) 0.7842
|
119 |
+
2023-10-13 15:46:33,759 saving best model
|
120 |
+
2023-10-13 15:46:34,290 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-13 15:46:40,939 epoch 4 - iter 147/1476 - loss 0.05685033 - time (sec): 6.65 - samples/sec: 2384.08 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-13 15:46:48,069 epoch 4 - iter 294/1476 - loss 0.06479773 - time (sec): 13.78 - samples/sec: 2436.98 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-13 15:46:55,648 epoch 4 - iter 441/1476 - loss 0.06082232 - time (sec): 21.35 - samples/sec: 2464.05 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-13 15:47:02,562 epoch 4 - iter 588/1476 - loss 0.06505374 - time (sec): 28.27 - samples/sec: 2398.45 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-13 15:47:09,655 epoch 4 - iter 735/1476 - loss 0.06490679 - time (sec): 35.36 - samples/sec: 2358.79 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-13 15:47:16,482 epoch 4 - iter 882/1476 - loss 0.06350270 - time (sec): 42.19 - samples/sec: 2323.62 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-13 15:47:23,844 epoch 4 - iter 1029/1476 - loss 0.06399013 - time (sec): 49.55 - samples/sec: 2342.65 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-10-13 15:47:30,580 epoch 4 - iter 1176/1476 - loss 0.06430831 - time (sec): 56.29 - samples/sec: 2330.72 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-13 15:47:37,629 epoch 4 - iter 1323/1476 - loss 0.06572771 - time (sec): 63.33 - samples/sec: 2354.52 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-10-13 15:47:44,586 epoch 4 - iter 1470/1476 - loss 0.06583572 - time (sec): 70.29 - samples/sec: 2359.14 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-10-13 15:47:44,847 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-13 15:47:44,848 EPOCH 4 done: loss 0.0658 - lr: 0.000033
|
133 |
+
2023-10-13 15:47:56,082 DEV : loss 0.17630523443222046 - f1-score (micro avg) 0.8153
|
134 |
+
2023-10-13 15:47:56,112 saving best model
|
135 |
+
2023-10-13 15:47:56,711 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-10-13 15:48:03,253 epoch 5 - iter 147/1476 - loss 0.04485170 - time (sec): 6.54 - samples/sec: 2355.16 - lr: 0.000033 - momentum: 0.000000
|
137 |
+
2023-10-13 15:48:09,999 epoch 5 - iter 294/1476 - loss 0.03902816 - time (sec): 13.28 - samples/sec: 2369.02 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-13 15:48:17,002 epoch 5 - iter 441/1476 - loss 0.04504258 - time (sec): 20.29 - samples/sec: 2406.17 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2023-10-13 15:48:23,884 epoch 5 - iter 588/1476 - loss 0.04251002 - time (sec): 27.17 - samples/sec: 2378.67 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-13 15:48:31,087 epoch 5 - iter 735/1476 - loss 0.04220286 - time (sec): 34.37 - samples/sec: 2391.39 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2023-10-13 15:48:38,154 epoch 5 - iter 882/1476 - loss 0.04528667 - time (sec): 41.44 - samples/sec: 2388.13 - lr: 0.000030 - momentum: 0.000000
|
142 |
+
2023-10-13 15:48:45,300 epoch 5 - iter 1029/1476 - loss 0.04637233 - time (sec): 48.59 - samples/sec: 2356.76 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-13 15:48:52,720 epoch 5 - iter 1176/1476 - loss 0.04767054 - time (sec): 56.01 - samples/sec: 2372.28 - lr: 0.000029 - momentum: 0.000000
|
144 |
+
2023-10-13 15:48:59,761 epoch 5 - iter 1323/1476 - loss 0.04742459 - time (sec): 63.05 - samples/sec: 2367.60 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-13 15:49:06,688 epoch 5 - iter 1470/1476 - loss 0.04806456 - time (sec): 69.97 - samples/sec: 2371.06 - lr: 0.000028 - momentum: 0.000000
|
146 |
+
2023-10-13 15:49:06,946 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-10-13 15:49:06,947 EPOCH 5 done: loss 0.0484 - lr: 0.000028
|
148 |
+
2023-10-13 15:49:18,117 DEV : loss 0.18819278478622437 - f1-score (micro avg) 0.7999
|
149 |
+
2023-10-13 15:49:18,147 ----------------------------------------------------------------------------------------------------
|
150 |
+
2023-10-13 15:49:25,047 epoch 6 - iter 147/1476 - loss 0.03631651 - time (sec): 6.90 - samples/sec: 2179.78 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-13 15:49:31,878 epoch 6 - iter 294/1476 - loss 0.03341746 - time (sec): 13.73 - samples/sec: 2233.74 - lr: 0.000027 - momentum: 0.000000
|
152 |
+
2023-10-13 15:49:39,202 epoch 6 - iter 441/1476 - loss 0.03106010 - time (sec): 21.05 - samples/sec: 2342.54 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-13 15:49:46,275 epoch 6 - iter 588/1476 - loss 0.03516578 - time (sec): 28.13 - samples/sec: 2336.61 - lr: 0.000026 - momentum: 0.000000
|
154 |
+
2023-10-13 15:49:53,144 epoch 6 - iter 735/1476 - loss 0.03483987 - time (sec): 35.00 - samples/sec: 2348.33 - lr: 0.000025 - momentum: 0.000000
|
155 |
+
2023-10-13 15:50:00,155 epoch 6 - iter 882/1476 - loss 0.03313512 - time (sec): 42.01 - samples/sec: 2372.38 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-13 15:50:06,939 epoch 6 - iter 1029/1476 - loss 0.03286769 - time (sec): 48.79 - samples/sec: 2353.00 - lr: 0.000024 - momentum: 0.000000
|
157 |
+
2023-10-13 15:50:13,772 epoch 6 - iter 1176/1476 - loss 0.03254763 - time (sec): 55.62 - samples/sec: 2356.11 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-13 15:50:21,043 epoch 6 - iter 1323/1476 - loss 0.03345823 - time (sec): 62.89 - samples/sec: 2387.16 - lr: 0.000023 - momentum: 0.000000
|
159 |
+
2023-10-13 15:50:27,847 epoch 6 - iter 1470/1476 - loss 0.03287175 - time (sec): 69.70 - samples/sec: 2380.16 - lr: 0.000022 - momentum: 0.000000
|
160 |
+
2023-10-13 15:50:28,118 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-10-13 15:50:28,119 EPOCH 6 done: loss 0.0328 - lr: 0.000022
|
162 |
+
2023-10-13 15:50:39,277 DEV : loss 0.20484893023967743 - f1-score (micro avg) 0.8029
|
163 |
+
2023-10-13 15:50:39,307 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-13 15:50:46,072 epoch 7 - iter 147/1476 - loss 0.01775270 - time (sec): 6.76 - samples/sec: 2267.31 - lr: 0.000022 - momentum: 0.000000
|
165 |
+
2023-10-13 15:50:53,821 epoch 7 - iter 294/1476 - loss 0.02118488 - time (sec): 14.51 - samples/sec: 2336.41 - lr: 0.000021 - momentum: 0.000000
|
166 |
+
2023-10-13 15:51:00,455 epoch 7 - iter 441/1476 - loss 0.02237123 - time (sec): 21.15 - samples/sec: 2323.11 - lr: 0.000021 - momentum: 0.000000
|
167 |
+
2023-10-13 15:51:07,535 epoch 7 - iter 588/1476 - loss 0.02143611 - time (sec): 28.23 - samples/sec: 2322.19 - lr: 0.000020 - momentum: 0.000000
|
168 |
+
2023-10-13 15:51:14,428 epoch 7 - iter 735/1476 - loss 0.02320718 - time (sec): 35.12 - samples/sec: 2341.16 - lr: 0.000019 - momentum: 0.000000
|
169 |
+
2023-10-13 15:51:21,513 epoch 7 - iter 882/1476 - loss 0.02422687 - time (sec): 42.21 - samples/sec: 2384.20 - lr: 0.000019 - momentum: 0.000000
|
170 |
+
2023-10-13 15:51:28,587 epoch 7 - iter 1029/1476 - loss 0.02343024 - time (sec): 49.28 - samples/sec: 2402.37 - lr: 0.000018 - momentum: 0.000000
|
171 |
+
2023-10-13 15:51:35,674 epoch 7 - iter 1176/1476 - loss 0.02306815 - time (sec): 56.37 - samples/sec: 2392.98 - lr: 0.000018 - momentum: 0.000000
|
172 |
+
2023-10-13 15:51:42,416 epoch 7 - iter 1323/1476 - loss 0.02322261 - time (sec): 63.11 - samples/sec: 2374.09 - lr: 0.000017 - momentum: 0.000000
|
173 |
+
2023-10-13 15:51:49,345 epoch 7 - iter 1470/1476 - loss 0.02302954 - time (sec): 70.04 - samples/sec: 2368.47 - lr: 0.000017 - momentum: 0.000000
|
174 |
+
2023-10-13 15:51:49,612 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-10-13 15:51:49,612 EPOCH 7 done: loss 0.0231 - lr: 0.000017
|
176 |
+
2023-10-13 15:52:00,780 DEV : loss 0.2176404744386673 - f1-score (micro avg) 0.8104
|
177 |
+
2023-10-13 15:52:00,810 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-13 15:52:07,878 epoch 8 - iter 147/1476 - loss 0.01220283 - time (sec): 7.07 - samples/sec: 2310.70 - lr: 0.000016 - momentum: 0.000000
|
179 |
+
2023-10-13 15:52:14,683 epoch 8 - iter 294/1476 - loss 0.01477755 - time (sec): 13.87 - samples/sec: 2316.37 - lr: 0.000016 - momentum: 0.000000
|
180 |
+
2023-10-13 15:52:21,717 epoch 8 - iter 441/1476 - loss 0.01557002 - time (sec): 20.91 - samples/sec: 2387.69 - lr: 0.000015 - momentum: 0.000000
|
181 |
+
2023-10-13 15:52:28,637 epoch 8 - iter 588/1476 - loss 0.01728477 - time (sec): 27.83 - samples/sec: 2368.74 - lr: 0.000014 - momentum: 0.000000
|
182 |
+
2023-10-13 15:52:35,625 epoch 8 - iter 735/1476 - loss 0.01772118 - time (sec): 34.81 - samples/sec: 2350.82 - lr: 0.000014 - momentum: 0.000000
|
183 |
+
2023-10-13 15:52:42,709 epoch 8 - iter 882/1476 - loss 0.01840414 - time (sec): 41.90 - samples/sec: 2332.60 - lr: 0.000013 - momentum: 0.000000
|
184 |
+
2023-10-13 15:52:49,619 epoch 8 - iter 1029/1476 - loss 0.01749539 - time (sec): 48.81 - samples/sec: 2327.72 - lr: 0.000013 - momentum: 0.000000
|
185 |
+
2023-10-13 15:52:57,024 epoch 8 - iter 1176/1476 - loss 0.01800568 - time (sec): 56.21 - samples/sec: 2344.29 - lr: 0.000012 - momentum: 0.000000
|
186 |
+
2023-10-13 15:53:03,895 epoch 8 - iter 1323/1476 - loss 0.01708246 - time (sec): 63.08 - samples/sec: 2351.96 - lr: 0.000012 - momentum: 0.000000
|
187 |
+
2023-10-13 15:53:10,882 epoch 8 - iter 1470/1476 - loss 0.01733501 - time (sec): 70.07 - samples/sec: 2368.38 - lr: 0.000011 - momentum: 0.000000
|
188 |
+
2023-10-13 15:53:11,151 ----------------------------------------------------------------------------------------------------
|
189 |
+
2023-10-13 15:53:11,151 EPOCH 8 done: loss 0.0173 - lr: 0.000011
|
190 |
+
2023-10-13 15:53:22,272 DEV : loss 0.20916695892810822 - f1-score (micro avg) 0.8181
|
191 |
+
2023-10-13 15:53:22,301 saving best model
|
192 |
+
2023-10-13 15:53:22,822 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-13 15:53:29,893 epoch 9 - iter 147/1476 - loss 0.01635506 - time (sec): 7.07 - samples/sec: 2461.72 - lr: 0.000011 - momentum: 0.000000
|
194 |
+
2023-10-13 15:53:36,767 epoch 9 - iter 294/1476 - loss 0.01655047 - time (sec): 13.94 - samples/sec: 2426.64 - lr: 0.000010 - momentum: 0.000000
|
195 |
+
2023-10-13 15:53:43,754 epoch 9 - iter 441/1476 - loss 0.01517177 - time (sec): 20.93 - samples/sec: 2367.10 - lr: 0.000009 - momentum: 0.000000
|
196 |
+
2023-10-13 15:53:50,701 epoch 9 - iter 588/1476 - loss 0.01363129 - time (sec): 27.88 - samples/sec: 2364.14 - lr: 0.000009 - momentum: 0.000000
|
197 |
+
2023-10-13 15:53:57,583 epoch 9 - iter 735/1476 - loss 0.01340167 - time (sec): 34.76 - samples/sec: 2360.92 - lr: 0.000008 - momentum: 0.000000
|
198 |
+
2023-10-13 15:54:04,370 epoch 9 - iter 882/1476 - loss 0.01292839 - time (sec): 41.54 - samples/sec: 2347.88 - lr: 0.000008 - momentum: 0.000000
|
199 |
+
2023-10-13 15:54:11,324 epoch 9 - iter 1029/1476 - loss 0.01181704 - time (sec): 48.50 - samples/sec: 2370.28 - lr: 0.000007 - momentum: 0.000000
|
200 |
+
2023-10-13 15:54:18,449 epoch 9 - iter 1176/1476 - loss 0.01179880 - time (sec): 55.62 - samples/sec: 2378.75 - lr: 0.000007 - momentum: 0.000000
|
201 |
+
2023-10-13 15:54:25,296 epoch 9 - iter 1323/1476 - loss 0.01152101 - time (sec): 62.47 - samples/sec: 2384.12 - lr: 0.000006 - momentum: 0.000000
|
202 |
+
2023-10-13 15:54:32,279 epoch 9 - iter 1470/1476 - loss 0.01152718 - time (sec): 69.45 - samples/sec: 2389.38 - lr: 0.000006 - momentum: 0.000000
|
203 |
+
2023-10-13 15:54:32,541 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-10-13 15:54:32,541 EPOCH 9 done: loss 0.0115 - lr: 0.000006
|
205 |
+
2023-10-13 15:54:43,751 DEV : loss 0.22271640598773956 - f1-score (micro avg) 0.8152
|
206 |
+
2023-10-13 15:54:43,780 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-13 15:54:50,626 epoch 10 - iter 147/1476 - loss 0.01146130 - time (sec): 6.84 - samples/sec: 2359.28 - lr: 0.000005 - momentum: 0.000000
|
208 |
+
2023-10-13 15:54:58,158 epoch 10 - iter 294/1476 - loss 0.00823611 - time (sec): 14.38 - samples/sec: 2480.56 - lr: 0.000004 - momentum: 0.000000
|
209 |
+
2023-10-13 15:55:05,151 epoch 10 - iter 441/1476 - loss 0.00776873 - time (sec): 21.37 - samples/sec: 2419.29 - lr: 0.000004 - momentum: 0.000000
|
210 |
+
2023-10-13 15:55:12,220 epoch 10 - iter 588/1476 - loss 0.00660613 - time (sec): 28.44 - samples/sec: 2368.38 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-13 15:55:18,963 epoch 10 - iter 735/1476 - loss 0.00628384 - time (sec): 35.18 - samples/sec: 2351.18 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-13 15:55:25,778 epoch 10 - iter 882/1476 - loss 0.00654294 - time (sec): 42.00 - samples/sec: 2333.14 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-13 15:55:33,071 epoch 10 - iter 1029/1476 - loss 0.00618452 - time (sec): 49.29 - samples/sec: 2340.88 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-13 15:55:40,251 epoch 10 - iter 1176/1476 - loss 0.00649196 - time (sec): 56.47 - samples/sec: 2335.05 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-13 15:55:47,188 epoch 10 - iter 1323/1476 - loss 0.00610162 - time (sec): 63.41 - samples/sec: 2332.22 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-13 15:55:54,348 epoch 10 - iter 1470/1476 - loss 0.00601101 - time (sec): 70.57 - samples/sec: 2353.06 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-13 15:55:54,607 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-13 15:55:54,607 EPOCH 10 done: loss 0.0060 - lr: 0.000000
|
219 |
+
2023-10-13 15:56:05,754 DEV : loss 0.22833691537380219 - f1-score (micro avg) 0.8171
|
220 |
+
2023-10-13 15:56:06,208 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-13 15:56:06,209 Loading model from best epoch ...
|
222 |
+
2023-10-13 15:56:07,748 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
223 |
+
2023-10-13 15:56:13,701
|
224 |
+
Results:
|
225 |
+
- F-score (micro) 0.7761
|
226 |
+
- F-score (macro) 0.6771
|
227 |
+
- Accuracy 0.6563
|
228 |
+
|
229 |
+
By class:
|
230 |
+
precision recall f1-score support
|
231 |
+
|
232 |
+
loc 0.8328 0.8590 0.8457 858
|
233 |
+
pers 0.7347 0.7840 0.7586 537
|
234 |
+
org 0.5094 0.6136 0.5567 132
|
235 |
+
time 0.5397 0.6296 0.5812 54
|
236 |
+
prod 0.6852 0.6066 0.6435 61
|
237 |
+
|
238 |
+
micro avg 0.7555 0.7978 0.7761 1642
|
239 |
+
macro avg 0.6604 0.6986 0.6771 1642
|
240 |
+
weighted avg 0.7596 0.7978 0.7777 1642
|
241 |
+
|
242 |
+
2023-10-13 15:56:13,701 ----------------------------------------------------------------------------------------------------
|