Model Card for Model ID
echo "Starting LoRA fine-tuning..."
deepspeed LLaVA/llava/train/train_mem.py
--lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5
--deepspeed ./LLaVA/scripts/zero3.json
--model_name_or_path liuhaotian/llava-v1.5-7b
--version v1
--data_path "${output_dir}/processed_dataset_correct_path.json"
--image_folder "${image_dir}"
--vision_tower openai/clip-vit-large-patch14-336
--mm_projector_type mlp2x_gelu
--mm_vision_select_layer -2
--mm_use_im_start_end False
--mm_use_im_patch_token False
--image_aspect_ratio pad
--group_by_modality_length True
--bf16 True
--output_dir "${output_dir}/checkpoints/${model_name}"
--num_train_epochs 1
--per_device_train_batch_size 3
--per_device_eval_batch_size 3
--gradient_accumulation_steps 10
--evaluation_strategy "no"
--save_strategy "steps"
--save_steps 50000
--save_total_limit 1
--learning_rate 2e-4
--weight_decay 0.
--warmup_ratio 0.03
--lr_scheduler_type "cosine"
--logging_steps 1
--tf32 True
--model_max_length 2048
--gradient_checkpointing True
--dataloader_num_workers 1
--lazy_preprocess True
Model Details
Model Description
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
Framework versions
- PEFT 0.12.0
- Downloads last month
- 1
Model tree for stash/llava-v1.5-7b-task-lora-20240804_042004
Base model
liuhaotian/llava-v1.5-7b