eer
#13
by
DORA1222
- opened
- README.md +13 -16
- model_index.json +0 -1
- vae/config.json +1 -1
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
license: openrail++
|
3 |
tags:
|
4 |
- stable-diffusion
|
5 |
-
-
|
6 |
---
|
7 |
# SD-XL 1.0-refiner Model Card
|
8 |
![row01](01.png)
|
@@ -58,22 +58,20 @@ In addition make sure to install `transformers`, `safetensors`, `accelerate` as
|
|
58 |
pip install invisible_watermark transformers accelerate safetensors
|
59 |
```
|
60 |
|
61 |
-
|
62 |
-
|
63 |
```py
|
|
|
64 |
import torch
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
)
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
prompt = "a photo of an astronaut riding a horse on mars"
|
76 |
-
image = pipe(prompt, image=init_image).images
|
77 |
```
|
78 |
|
79 |
When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline:
|
@@ -89,7 +87,6 @@ instead of `.to("cuda")`:
|
|
89 |
+ pipe.enable_model_cpu_offload()
|
90 |
```
|
91 |
|
92 |
-
For more advanced use cases, please have a look at [the docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/stable_diffusion_xl).
|
93 |
|
94 |
## Uses
|
95 |
|
|
|
2 |
license: openrail++
|
3 |
tags:
|
4 |
- stable-diffusion
|
5 |
+
- text-to-image
|
6 |
---
|
7 |
# SD-XL 1.0-refiner Model Card
|
8 |
![row01](01.png)
|
|
|
58 |
pip install invisible_watermark transformers accelerate safetensors
|
59 |
```
|
60 |
|
61 |
+
You can use the model then as follows
|
|
|
62 |
```py
|
63 |
+
from diffusers import DiffusionPipeline
|
64 |
import torch
|
65 |
+
|
66 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1-0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
67 |
+
pipe.to("cuda")
|
68 |
+
|
69 |
+
# if using torch < 2.0
|
70 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
71 |
+
|
72 |
+
prompt = "An astronaut riding a green horse"
|
73 |
+
|
74 |
+
images = pipe(prompt=prompt).images[0]
|
|
|
|
|
75 |
```
|
76 |
|
77 |
When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline:
|
|
|
87 |
+ pipe.enable_model_cpu_offload()
|
88 |
```
|
89 |
|
|
|
90 |
|
91 |
## Uses
|
92 |
|
model_index.json
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
"_class_name": "StableDiffusionXLImg2ImgPipeline",
|
3 |
"_diffusers_version": "0.19.0.dev0",
|
4 |
"force_zeros_for_empty_prompt": false,
|
5 |
-
"add_watermarker": null,
|
6 |
"requires_aesthetics_score": true,
|
7 |
"scheduler": [
|
8 |
"diffusers",
|
|
|
2 |
"_class_name": "StableDiffusionXLImg2ImgPipeline",
|
3 |
"_diffusers_version": "0.19.0.dev0",
|
4 |
"force_zeros_for_empty_prompt": false,
|
|
|
5 |
"requires_aesthetics_score": true,
|
6 |
"scheduler": [
|
7 |
"diffusers",
|
vae/config.json
CHANGED
@@ -21,7 +21,7 @@
|
|
21 |
"layers_per_block": 2,
|
22 |
"norm_num_groups": 32,
|
23 |
"out_channels": 3,
|
24 |
-
"sample_size":
|
25 |
"scaling_factor": 0.13025,
|
26 |
"up_block_types": [
|
27 |
"UpDecoderBlock2D",
|
|
|
21 |
"layers_per_block": 2,
|
22 |
"norm_num_groups": 32,
|
23 |
"out_channels": 3,
|
24 |
+
"sample_size": 512,
|
25 |
"scaling_factor": 0.13025,
|
26 |
"up_block_types": [
|
27 |
"UpDecoderBlock2D",
|