Updating x-vector readme to add diarization recipe link

#2
by nauman - opened
Files changed (1) hide show
  1. README.md +11 -2
README.md CHANGED
@@ -27,7 +27,7 @@ widget:
27
  <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
28
  <br/><br/>
29
 
30
- # Speaker Verification with xvector embeddings on Voxceleb
31
 
32
  This repository provides all the necessary tools to extract speaker embeddings with a pretrained TDNN model using SpeechBrain.
33
  The system is trained on Voxceleb 1+ Voxceleb2 training data.
@@ -92,10 +92,19 @@ python train_speaker_embeddings.py hparams/train_x_vectors.yaml --data_folder=yo
92
 
93
  You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1RtCBJ3O8iOCkFrJItCKT9oL-Q1MNCwMH?usp=sharing).
94
 
 
 
 
 
 
 
 
 
 
95
  ### Limitations
96
  The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
97
 
98
- #### Referencing xvectors
99
  ```@inproceedings{DBLP:conf/odyssey/SnyderGMSPK18,
100
  author = {David Snyder and
101
  Daniel Garcia{-}Romero and
 
27
  <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
28
  <br/><br/>
29
 
30
+ # Speaker Verification with x-vector embeddings on Voxceleb
31
 
32
  This repository provides all the necessary tools to extract speaker embeddings with a pretrained TDNN model using SpeechBrain.
33
  The system is trained on Voxceleb 1+ Voxceleb2 training data.
 
92
 
93
  You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1RtCBJ3O8iOCkFrJItCKT9oL-Q1MNCwMH?usp=sharing).
94
 
95
+ # Speaker Diarization with ECAPA-TDNN Embeddings
96
+ Note that, this trained x-vector model is also used for speaker diarization task. A full diarization pipeline including boudary preparation using RTTM files, speaker embedding extraction, and backend spectral clustering for [AMI dataset](https://groups.inf.ed.ac.uk/ami/corpus/) can be found [here](https://github.com/speechbrain/speechbrain/tree/develop/recipes/AMI/Diarization).
97
+
98
+ 1. Run Inference for Diarization:
99
+ ```
100
+ cd recipes/AMI/Diarization
101
+ python experiment.py hparams/xvectors.yaml
102
+ ```
103
+
104
  ### Limitations
105
  The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
106
 
107
+ #### Referencing x-vectors
108
  ```@inproceedings{DBLP:conf/odyssey/SnyderGMSPK18,
109
  author = {David Snyder and
110
  Daniel Garcia{-}Romero and