File size: 4,488 Bytes
4386cc8
43ffef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4386cc8
43ffef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a688aca
43ffef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719fc92
 
 
 
 
 
 
43ffef3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
language: "en"
thumbnail:
tags:
- Source Separation
- Speech Separation
- Audio Source Separation
- Libri2Mix
- SepFormer
- Transformer 
- audio-to-audio 
- audio-source-separation
- speechbrain
license: "apache-2.0"
datasets:
- Libri2Mix
metrics:
- SI-SNRi
- SDRi

---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# SepFormer trained on Libri2Mix

This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2) 
model, implemented with SpeechBrain, and pretrained on Libri2Mix dataset. For a better experience we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The model performance is 20.6 dB on the test set of Libri2Mix dataset.

| Release | Test-Set SI-SNRi | Test-Set SDRi |
|:-------------:|:--------------:|:--------------:|
| 16-09-22 | 20.6dB | 20.9dB |

You can listen to example results obtained on the test set of WSJ0-2/3Mix through [here](https://sourceseparationresearch.com/static/sepformer_example_results/sepformer_results.html). 


## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
pip install speechbrain
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Perform source separation on your own audio file
```python
from speechbrain.pretrained import SepformerSeparation as separator
import torchaudio

model = separator.from_hparams(source="speechbrain/sepformer-libri2mix", savedir='pretrained_models/sepformer-libri2mix')

# for custom file, change path
est_sources = model.separate_file(path='speechbrain/sepformer-wsj02mix/test_mixture.wav') 

torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000)
torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000)
```

The system expects input recordings sampled at 8kHz (single channel).
If your signal has a different sample rate, resample it (e.g, using torchaudio or sox) before using the interface.

### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain (fc2eabb7).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```
cd  recipes/Libri2Mix/separation
python train.py hparams/sepformer.yaml --data_folder=your_data_folder
```

You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1NPTXw4i9Vmahhr5BSQQa-ZTTm45FwYJA).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

#### Referencing SpeechBrain

```bibtex
@misc{speechbrain,
  title={{SpeechBrain}: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  note={arXiv:2106.04624}
}
```


#### Referencing SepFormer
```bibtex
@inproceedings{subakan2021attention,
      title={Attention is All You Need in Speech Separation}, 
      author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
      year={2021},
      booktitle={ICASSP 2021}
}

@article{subakan2023exploring,
  author={Subakan, Cem and Ravanelli, Mirco and Cornell, Samuele and Grondin, François and Bronzi, Mirko},
  journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing}, 
  title={Exploring Self-Attention Mechanisms for Speech Separation}, 
  year={2023},
  volume={31},
  pages={2169-2180},
}

```

# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/