File size: 4,488 Bytes
4386cc8 43ffef3 4386cc8 43ffef3 a688aca 43ffef3 719fc92 43ffef3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
language: "en"
thumbnail:
tags:
- Source Separation
- Speech Separation
- Audio Source Separation
- Libri2Mix
- SepFormer
- Transformer
- audio-to-audio
- audio-source-separation
- speechbrain
license: "apache-2.0"
datasets:
- Libri2Mix
metrics:
- SI-SNRi
- SDRi
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# SepFormer trained on Libri2Mix
This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2)
model, implemented with SpeechBrain, and pretrained on Libri2Mix dataset. For a better experience we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The model performance is 20.6 dB on the test set of Libri2Mix dataset.
| Release | Test-Set SI-SNRi | Test-Set SDRi |
|:-------------:|:--------------:|:--------------:|
| 16-09-22 | 20.6dB | 20.9dB |
You can listen to example results obtained on the test set of WSJ0-2/3Mix through [here](https://sourceseparationresearch.com/static/sepformer_example_results/sepformer_results.html).
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Perform source separation on your own audio file
```python
from speechbrain.pretrained import SepformerSeparation as separator
import torchaudio
model = separator.from_hparams(source="speechbrain/sepformer-libri2mix", savedir='pretrained_models/sepformer-libri2mix')
# for custom file, change path
est_sources = model.separate_file(path='speechbrain/sepformer-wsj02mix/test_mixture.wav')
torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000)
torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000)
```
The system expects input recordings sampled at 8kHz (single channel).
If your signal has a different sample rate, resample it (e.g, using torchaudio or sox) before using the interface.
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (fc2eabb7).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/Libri2Mix/separation
python train.py hparams/sepformer.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1NPTXw4i9Vmahhr5BSQQa-ZTTm45FwYJA).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing SpeechBrain
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
#### Referencing SepFormer
```bibtex
@inproceedings{subakan2021attention,
title={Attention is All You Need in Speech Separation},
author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
year={2021},
booktitle={ICASSP 2021}
}
@article{subakan2023exploring,
author={Subakan, Cem and Ravanelli, Mirco and Cornell, Samuele and Grondin, François and Bronzi, Mirko},
journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
title={Exploring Self-Attention Mechanisms for Speech Separation},
year={2023},
volume={31},
pages={2169-2180},
}
```
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/ |