cemsubakan commited on
Commit
43ffef3
·
1 Parent(s): 4386cc8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +129 -1
README.md CHANGED
@@ -1,3 +1,131 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: "en"
3
+ thumbnail:
4
+ tags:
5
+ - Source Separation
6
+ - Speech Separation
7
+ - Audio Source Separation
8
+ - Libri2Mix
9
+ - SepFormer
10
+ - Transformer
11
+ - audio-to-audio
12
+ - audio-source-separation
13
+ - speechbrain
14
+ license: "apache-2.0"
15
+ datasets:
16
+ - Libri2Mix
17
+ metrics:
18
+ - SI-SNRi
19
+ - SDRi
20
+
21
  ---
22
+
23
+ <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
24
+ <br/><br/>
25
+
26
+ # SepFormer trained on Libri2Mix
27
+
28
+ This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2)
29
+ model, implemented with SpeechBrain, and pretrained on Libri2Mix dataset. For a better experience we encourage you to learn more about
30
+ [SpeechBrain](https://speechbrain.github.io). The model performance is 20.6 dB on the test set of Libri2Mix dataset.
31
+
32
+ | Release | Test-Set SI-SNRi | Test-Set SDRi |
33
+ |:-------------:|:--------------:|:--------------:|
34
+ | 16-09-22 | 20.6dB | 20.9dB |
35
+
36
+ You can listen to example results obtained on the test set of WSJ0-2/3Mix through [here](https://sourceseparationresearch.com/static/sepformer_example_results/sepformer_results.html).
37
+
38
+
39
+ ## Install SpeechBrain
40
+
41
+ First of all, please install SpeechBrain with the following command:
42
+
43
+ ```
44
+ pip install speechbrain
45
+ ```
46
+
47
+ Please notice that we encourage you to read our tutorials and learn more about
48
+ [SpeechBrain](https://speechbrain.github.io).
49
+
50
+ ### Perform source separation on your own audio file
51
+ ```python
52
+ from speechbrain.pretrained import SepformerSeparation as separator
53
+ import torchaudio
54
+
55
+ model = separator.from_hparams(source="speechbrain/sepformer-libri2mix", savedir='pretrained_models/sepformer-libri2mix')
56
+
57
+ # for custom file, change path
58
+ est_sources = model.separate_file(path='speechbrain/sepformer-wsj02mix/test_mixture.wav')
59
+
60
+ torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000)
61
+ torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000)
62
+ ```
63
+
64
+ The system expects input recordings sampled at 8kHz (single channel).
65
+ If your signal has a different sample rate, resample it (e.g, using torchaudio or sox) before using the interface.
66
+
67
+ ### Inference on GPU
68
+ To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
69
+
70
+ ### Training
71
+ The model was trained with SpeechBrain (fc2eabb7).
72
+ To train it from scratch follows these steps:
73
+ 1. Clone SpeechBrain:
74
+ ```bash
75
+ git clone https://github.com/speechbrain/speechbrain/
76
+ ```
77
+ 2. Install it:
78
+ ```
79
+ cd speechbrain
80
+ pip install -r requirements.txt
81
+ pip install -e .
82
+ ```
83
+
84
+ 3. Run Training:
85
+ ```
86
+ cd recipes/Libri2Mix/separation
87
+ python train.py hparams/sepformer.yaml --data_folder=your_data_folder
88
+ ```
89
+
90
+ You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1cON-eqtKv_NYnJhaE9VjLT_e2ybn-O7u?usp=sharing).
91
+
92
+ ### Limitations
93
+ The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
94
+
95
+ #### Referencing SpeechBrain
96
+
97
+ ```bibtex
98
+ @misc{speechbrain,
99
+ title={{SpeechBrain}: A General-Purpose Speech Toolkit},
100
+ author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
101
+ year={2021},
102
+ eprint={2106.04624},
103
+ archivePrefix={arXiv},
104
+ primaryClass={eess.AS},
105
+ note={arXiv:2106.04624}
106
+ }
107
+ ```
108
+
109
+
110
+ #### Referencing SepFormer
111
+ ```bibtex
112
+ @inproceedings{subakan2021attention,
113
+ title={Attention is All You Need in Speech Separation},
114
+ author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
115
+ year={2021},
116
+ booktitle={ICASSP 2021}
117
+ }
118
+
119
+ @misc{subakan2022sepformer
120
+ author = {Subakan, Cem and Ravanelli, Mirco and Cornell, Samuele and Grondin, Francois and Bronzi, Mirko},
121
+ title = {On Using Transformers for Speech-Separation},
122
+ year = {2022},
123
+ copyright = {arXiv.org perpetual, non-exclusive license}
124
+ }
125
+
126
+ ```
127
+
128
+ # **About SpeechBrain**
129
+ - Website: https://speechbrain.github.io/
130
+ - Code: https://github.com/speechbrain/speechbrain/
131
+ - HuggingFace: https://huggingface.co/speechbrain/