wav2vec2-large-TIMIT-IPA2
This model is a fine-tuned version of facebook/wav2vec2-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1531
- Per: 0.0638
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Per |
---|---|---|---|---|
2.0846 | 6.85 | 500 | 0.1810 | 0.0991 |
0.1857 | 13.7 | 1000 | 0.1411 | 0.0691 |
0.0948 | 20.55 | 1500 | 0.1345 | 0.0666 |
0.0646 | 27.4 | 2000 | 0.1444 | 0.0673 |
0.0502 | 34.25 | 2500 | 0.1436 | 0.0628 |
0.0381 | 41.1 | 3000 | 0.1383 | 0.0637 |
0.0309 | 47.95 | 3500 | 0.1533 | 0.0638 |
0.0261 | 54.79 | 4000 | 0.1531 | 0.0638 |
Framework versions
- Transformers 4.20.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.2.dev0
- Tokenizers 0.12.1
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.