wav2vec2-large-TIMIT-IPA2

This model is a fine-tuned version of facebook/wav2vec2-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1531
  • Per: 0.0638

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Per
2.0846 6.85 500 0.1810 0.0991
0.1857 13.7 1000 0.1411 0.0691
0.0948 20.55 1500 0.1345 0.0666
0.0646 27.4 2000 0.1444 0.0673
0.0502 34.25 2500 0.1436 0.0628
0.0381 41.1 3000 0.1383 0.0637
0.0309 47.95 3500 0.1533 0.0638
0.0261 54.79 4000 0.1531 0.0638

Framework versions

  • Transformers 4.20.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.2.dev0
  • Tokenizers 0.12.1
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.