File size: 3,684 Bytes
0afbbcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
tags:
- spacy
- token-classification
language:
- zh
license: MIT
model-index:
- name: zh_core_web_md
results:
- tasks:
name: NER
type: token-classification
metrics:
- name: Precision
type: precision
value: 0.7220589964
- name: Recall
type: recall
value: 0.6751648352
- name: F Score
type: f_score
value: 0.6978249759
- tasks:
name: POS
type: token-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9004973002
- tasks:
name: SENTER
type: token-classification
metrics:
- name: Precision
type: precision
value: 0.7859447831
- name: Recall
type: recall
value: 0.7298152156
- name: F Score
type: f_score
value: 0.7568407423
- tasks:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.7076909586
- tasks:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.7076909586
---
### Details: https://spacy.io/models/zh#zh_core_web_md
Chinese pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `zh_core_web_md` |
| **Version** | `3.1.0` |
| **spaCy** | `>=3.1.0,<3.2.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[CoreNLP Universal Dependencies Converter](https://nlp.stanford.edu/software/stanford-dependencies.html) (Stanford NLP Group)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (101 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `AD`, `AS`, `BA`, `CC`, `CD`, `CS`, `DEC`, `DEG`, `DER`, `DEV`, `DT`, `ETC`, `FW`, `IJ`, `INF`, `JJ`, `LB`, `LC`, `M`, `MSP`, `NN`, `NR`, `NT`, `OD`, `ON`, `P`, `PN`, `PU`, `SB`, `SP`, `URL`, `VA`, `VC`, `VE`, `VV`, `X` |
| **`parser`** | `ROOT`, `acl`, `advcl:loc`, `advmod`, `advmod:dvp`, `advmod:loc`, `advmod:rcomp`, `amod`, `amod:ordmod`, `appos`, `aux:asp`, `aux:ba`, `aux:modal`, `aux:prtmod`, `auxpass`, `case`, `cc`, `ccomp`, `compound:nn`, `compound:vc`, `conj`, `cop`, `dep`, `det`, `discourse`, `dobj`, `etc`, `mark`, `mark:clf`, `name`, `neg`, `nmod`, `nmod:assmod`, `nmod:poss`, `nmod:prep`, `nmod:range`, `nmod:tmod`, `nmod:topic`, `nsubj`, `nsubj:xsubj`, `nsubjpass`, `nummod`, `parataxis:prnmod`, `punct`, `xcomp` |
| **`senter`** | `I`, `S` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 97.88 |
| `TAG_ACC` | 90.05 |
| `DEP_UAS` | 70.77 |
| `DEP_LAS` | 65.52 |
| `ENTS_P` | 72.21 |
| `ENTS_R` | 67.52 |
| `ENTS_F` | 69.78 |
| `SENTS_P` | 78.59 |
| `SENTS_R` | 72.98 |
| `SENTS_F` | 75.68 | |