File size: 4,129 Bytes
7ed6818
 
 
 
 
 
6f3e94b
7ed6818
 
 
 
 
 
 
 
 
6084989
7ed6818
 
6084989
7ed6818
 
6084989
102bb34
 
 
 
 
 
 
7ed6818
 
 
 
102bb34
7ed6818
6084989
7ed6818
102bb34
7ed6818
 
102bb34
 
 
7ed6818
102bb34
7ed6818
 
102bb34
7ed6818
62d5a10
102bb34
 
 
 
 
 
6084989
7ed6818
 
 
 
102bb34
 
6084989
102bb34
 
 
 
 
 
6084989
7ed6818
5d3b653
 
6f3e94b
5d3b653
 
 
 
6084989
 
6f3e94b
 
5d3b653
6f3e94b
5d3b653
 
 
 
 
 
 
62d5a10
5d3b653
 
 
62d5a10
5d3b653
 
 
 
 
 
 
 
 
6084989
6f3e94b
 
 
6084989
102bb34
6f3e94b
 
 
6084989
 
 
 
 
102bb34
62d5a10
6084989
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
tags:
- spacy
- token-classification
language:
- ja
license: cc-by-sa-4.0
model-index:
- name: ja_core_news_md
  results:
  - task:
      name: NER
      type: token-classification
    metrics:
    - name: NER Precision
      type: precision
      value: 0.7121418827
    - name: NER Recall
      type: recall
      value: 0.6566037736
    - name: NER F Score
      type: f_score
      value: 0.6832460733
  - task:
      name: TAG
      type: token-classification
    metrics:
    - name: TAG (XPOS) Accuracy
      type: accuracy
      value: 0.9712488769
  - task:
      name: POS
      type: token-classification
    metrics:
    - name: POS (UPOS) Accuracy
      type: accuracy
      value: 0.9721881391
  - task:
      name: MORPH
      type: token-classification
    metrics:
    - name: Morph (UFeats) Accuracy
      type: accuracy
      value: 0.0
  - task:
      name: LEMMA
      type: token-classification
    metrics:
    - name: Lemma Accuracy
      type: accuracy
      value: 0.9670526831
  - task:
      name: UNLABELED_DEPENDENCIES
      type: token-classification
    metrics:
    - name: Unlabeled Attachment Score (UAS)
      type: f_score
      value: 0.9203675345
  - task:
      name: LABELED_DEPENDENCIES
      type: token-classification
    metrics:
    - name: Labeled Attachment Score (LAS)
      type: f_score
      value: 0.9074140723
  - task:
      name: SENTS
      type: token-classification
    metrics:
    - name: Sentences F-Score
      type: f_score
      value: 0.9774730656
---
### Details: https://spacy.io/models/ja#ja_core_news_md

Japanese pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler.

| Feature | Description |
| --- | --- |
| **Name** | `ja_core_news_md` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 480443 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [UD Japanese GSD v2.8](https://github.com/UniversalDependencies/UD_Japanese-GSD) (Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel)<br />[UD Japanese GSD v2.8 NER](https://github.com/megagonlabs/UD_Japanese-GSD) (Megagon Labs Tokyo)<br />[chiVe: Japanese Word Embedding with Sudachi & NWJC (chive-1.1-mc90-500k)](https://github.com/WorksApplications/chiVe) (Works Applications) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |

### Label Scheme

<details>

<summary>View label scheme (65 labels for 3 components)</summary>

| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=NOUN`, `POS=ADP`, `POS=VERB`, `POS=SCONJ`, `POS=AUX`, `POS=PUNCT`, `POS=PART`, `POS=DET`, `POS=NUM`, `POS=ADV`, `POS=PRON`, `POS=ADJ`, `POS=PROPN`, `POS=CCONJ`, `POS=SYM`, `POS=NOUN\|Polarity=Neg`, `POS=AUX\|Polarity=Neg`, `POS=SPACE`, `POS=INTJ`, `POS=SCONJ\|Polarity=Neg` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `aux`, `case`, `cc`, `ccomp`, `compound`, `cop`, `csubj`, `dep`, `det`, `dislocated`, `fixed`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `punct` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `MOVEMENT`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PET_NAME`, `PHONE`, `PRODUCT`, `QUANTITY`, `TIME`, `TITLE_AFFIX`, `WORK_OF_ART` |

</details>

### Accuracy

| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.37 |
| `TOKEN_P` | 97.65 |
| `TOKEN_R` | 97.90 |
| `TOKEN_F` | 97.77 |
| `POS_ACC` | 97.22 |
| `MORPH_ACC` | 0.00 |
| `MORPH_MICRO_P` | 34.01 |
| `MORPH_MICRO_R` | 98.04 |
| `MORPH_MICRO_F` | 50.51 |
| `SENTS_P` | 97.08 |
| `SENTS_R` | 98.42 |
| `SENTS_F` | 97.75 |
| `DEP_UAS` | 92.04 |
| `DEP_LAS` | 90.74 |
| `TAG_ACC` | 97.12 |
| `LEMMA_ACC` | 96.71 |
| `ENTS_P` | 71.21 |
| `ENTS_R` | 65.66 |
| `ENTS_F` | 68.32 |