File size: 7,934 Bytes
f2a2544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797cdd5
f2a2544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797cdd5
f2a2544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797cdd5
f2a2544
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
from PIL import Image
import numpy as np
import gradio as gr


def assert_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image selected or uploaded!")

def prepare_working_dir():
    import tempfile
    working_dir = tempfile.TemporaryDirectory()
    return working_dir

def init_preprocessor():
    from openlrm.utils.preprocess import Preprocessor
    global preprocessor
    preprocessor = Preprocessor()

def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir):
    image_raw = os.path.join(working_dir.name, "raw.png")
    with Image.fromarray(image_in) as img:
        img.save(image_raw)
    image_out = os.path.join(working_dir.name, "rembg.png")
    success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter)
    assert success, f"Failed under preprocess_fn!"
    return image_out


def demo_openlrm(infer_impl):

    def core_fn(image: str, source_cam_dist: float, working_dir):
        dump_video_path = os.path.join(working_dir.name, "output.mp4")
        dump_mesh_path = os.path.join(working_dir.name, "output.ply")
        infer_impl(
            image_path=image,
            source_cam_dist=source_cam_dist,
            export_video=True,
            export_mesh=False,
            dump_video_path=dump_video_path,
            dump_mesh_path=dump_mesh_path,
        )
        return dump_video_path

    def example_fn(image: np.ndarray):
        from gradio.utils import get_cache_folder
        working_dir = get_cache_folder()
        image = preprocess_fn(
            image_in=image,
            remove_bg=True,
            recenter=True,
            working_dir=working_dir,
        )
        video = core_fn(
            image=image,
            source_cam_dist=2.0,
            working_dir=working_dir,
        )
        return image, video


    _TITLE = '''OpenLRM: Open-Source Large Reconstruction Models'''

    _DESCRIPTION = '''
        <div>
            <a style="display:inline-block" href='https://github.com/3DTopia/OpenLRM'><img src='https://img.shields.io/github/stars/3DTopia/OpenLRM?style=social'/></a>
            <a style="display:inline-block; margin-left: .5em" href="https://huggingface.co/zxhezexin"><img src='https://img.shields.io/badge/Model-Weights-blue'/></a>
        </div>
        OpenLRM is an open-source implementation of Large Reconstruction Models.

        <strong>Image-to-3D in 10 seconds with A100!</strong>

        <strong>Disclaimer:</strong> This demo uses `openlrm-mix-base-1.1` model with 288x288 rendering resolution here for a quick demonstration.
    '''

    with gr.Blocks(analytics_enabled=False) as demo:

        # HEADERS
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
        with gr.Row():
            gr.Markdown(_DESCRIPTION)

        # DISPLAY
        with gr.Row():

            with gr.Column(variant='panel', scale=1):
                with gr.Tabs(elem_id="openlrm_input_image"):
                    with gr.TabItem('Input Image'):
                        with gr.Row():
                            input_image = gr.Image(label="Input Image", image_mode="RGBA", width="auto", sources="upload", type="numpy", elem_id="content_image")

            with gr.Column(variant='panel', scale=1):
                with gr.Tabs(elem_id="openlrm_processed_image"):
                    with gr.TabItem('Processed Image'):
                        with gr.Row():
                            processed_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", width="auto", interactive=False)

            with gr.Column(variant='panel', scale=1):
                with gr.Tabs(elem_id="openlrm_render_video"):
                    with gr.TabItem('Rendered Video'):
                        with gr.Row():
                            output_video = gr.Video(label="Rendered Video", format="mp4", width="auto", autoplay=True)

        # SETTING
        with gr.Row():
            with gr.Column(variant='panel', scale=1):
                with gr.Tabs(elem_id="openlrm_attrs"):
                    with gr.TabItem('Settings'):
                        with gr.Column(variant='panel'):
                            gr.Markdown(
                                """
                                <strong>Best Practice</strong>:
                                    Centered objects in reasonable sizes. Try adjusting source camera distances.
                                """
                            )
                            checkbox_rembg = gr.Checkbox(True, label='Remove background')
                            checkbox_recenter = gr.Checkbox(True, label='Recenter the object')
                            slider_cam_dist = gr.Slider(1.0, 3.5, value=2.0, step=0.1, label="Source Camera Distance")
                            submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary')

        # EXAMPLES
        with gr.Row():
            examples = [
                ['assets/sample_input/owl.png'],
                ['assets/sample_input/building.png'],
                ['assets/sample_input/mailbox.png'],
                ['assets/sample_input/fire.png'],
                ['assets/sample_input/girl.png'],
                ['assets/sample_input/lamp.png'],
                ['assets/sample_input/hydrant.png'],
                ['assets/sample_input/hotdogs.png'],
                ['assets/sample_input/traffic.png'],
                ['assets/sample_input/ceramic.png'],
            ]
            gr.Examples(
                examples=examples,
                inputs=[input_image], 
                outputs=[processed_image, output_video],
                fn=example_fn,
                cache_examples=bool(os.getenv('SPACE_ID')),
                examples_per_page=20,
            )

        working_dir = gr.State()
        submit.click(
            fn=assert_input_image,
            inputs=[input_image],
            queue=False,
        ).success(
            fn=prepare_working_dir,
            outputs=[working_dir],
            queue=False,
        ).success(
            fn=preprocess_fn,
            inputs=[input_image, checkbox_rembg, checkbox_recenter, working_dir],
            outputs=[processed_image],
        ).success(
            fn=core_fn,
            inputs=[processed_image, slider_cam_dist, working_dir],
            outputs=[output_video],
        )

        demo.queue()
        demo.launch()


def launch_gradio_app():

    os.environ.update({
        "APP_ENABLED": "1",
        "APP_MODEL_NAME": "zxhezexin/openlrm-mix-base-1.1",
        "APP_INFER": "./configs/infer-gradio.yaml",
        "APP_TYPE": "infer.lrm",
        "NUMBA_THREADING_LAYER": 'omp',
    })

    from openlrm.runners import REGISTRY_RUNNERS
    from openlrm.runners.infer.base_inferrer import Inferrer
    InferrerClass : Inferrer = REGISTRY_RUNNERS[os.getenv("APP_TYPE")]
    with InferrerClass() as inferrer:
        init_preprocessor()
        if not bool(os.getenv('SPACE_ID')):
            from openlrm.utils.proxy import no_proxy
            demo = no_proxy(demo_openlrm)
        else:
            demo = demo_openlrm
        demo(infer_impl=inferrer.infer_single)


if __name__ == '__main__':

    launch_gradio_app()