Spaces:
Sleeping
Sleeping
File size: 7,928 Bytes
f2a2544 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from PIL import Image
import numpy as np
import gradio as gr
def assert_input_image(input_image):
if input_image is None:
raise gr.Error("No image selected or uploaded!")
def prepare_working_dir():
import tempfile
working_dir = tempfile.TemporaryDirectory()
return working_dir
def init_preprocessor():
from openlrm.utils.preprocess import Preprocessor
global preprocessor
preprocessor = Preprocessor()
def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir):
image_raw = os.path.join(working_dir.name, "raw.png")
with Image.fromarray(image_in) as img:
img.save(image_raw)
image_out = os.path.join(working_dir.name, "rembg.png")
success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter)
assert success, f"Failed under preprocess_fn!"
return image_out
def demo_openlrm(infer_impl):
def core_fn(image: str, source_cam_dist: float, working_dir):
dump_video_path = os.path.join(working_dir.name, "output.mp4")
dump_mesh_path = os.path.join(working_dir.name, "output.ply")
infer_impl(
image_path=image,
source_cam_dist=source_cam_dist,
export_video=True,
export_mesh=False,
dump_video_path=dump_video_path,
dump_mesh_path=dump_mesh_path,
)
return dump_video_path
def example_fn(image: np.ndarray):
from gradio.utils import get_cache_folder
working_dir = get_cache_folder()
image = preprocess_fn(
image_in=image,
remove_bg=True,
recenter=True,
working_dir=working_dir,
)
video = core_fn(
image=image,
source_cam_dist=2.0,
working_dir=working_dir,
)
return image, video
_TITLE = '''OpenLRM: Open-Source Large Reconstruction Models'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href='https://github.com/3DTopia/OpenLRM'><img src='https://img.shields.io/github/stars/3DTopia/OpenLRM?style=social'/></a>
<a style="display:inline-block; margin-left: .5em" href="https://huggingface.co/zxhezexin"><img src='https://img.shields.io/badge/Model-Weights-blue'/></a>
</div>
OpenLRM is an open-source implementation of Large Reconstruction Models.
<strong>Image-to-3D in 10 seconds!</strong>
<strong>Disclaimer:</strong> This demo uses `openlrm-mix-base-1.1` model with 288x288 rendering resolution here for a quick demonstration.
'''
with gr.Blocks(analytics_enabled=False) as demo:
# HEADERS
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
with gr.Row():
gr.Markdown(_DESCRIPTION)
# DISPLAY
with gr.Row():
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_input_image"):
with gr.TabItem('Input Image'):
with gr.Row():
input_image = gr.Image(label="Input Image", image_mode="RGBA", width="auto", sources="upload", type="numpy", elem_id="content_image")
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_processed_image"):
with gr.TabItem('Processed Image'):
with gr.Row():
processed_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", width="auto", interactive=False)
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_render_video"):
with gr.TabItem('Rendered Video'):
with gr.Row():
output_video = gr.Video(label="Rendered Video", format="mp4", width="auto", autoplay=True)
# SETTING
with gr.Row():
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_attrs"):
with gr.TabItem('Settings'):
with gr.Column(variant='panel'):
gr.Markdown(
"""
<strong>Best Practice</strong>:
Centered objects in reasonable sizes. Try adjusting source camera distances.
"""
)
checkbox_rembg = gr.Checkbox(True, label='Remove background')
checkbox_recenter = gr.Checkbox(True, label='Recenter the object')
slider_cam_dist = gr.Slider(1.0, 3.5, value=2.0, step=0.1, label="Source Camera Distance")
submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary')
# EXAMPLES
with gr.Row():
examples = [
['assets/sample_input/owl.png'],
['assets/sample_input/building.png'],
['assets/sample_input/mailbox.png'],
['assets/sample_input/fire.png'],
['assets/sample_input/girl.png'],
['assets/sample_input/lamp.png'],
['assets/sample_input/hydrant.png'],
['assets/sample_input/hotdogs.png'],
['assets/sample_input/traffic.png'],
['assets/sample_input/ceramic.png'],
]
gr.Examples(
examples=examples,
inputs=[input_image],
outputs=[processed_image, output_video],
fn=example_fn,
cache_examples=os.getenv('SYSTEM') != 'spaces',
examples_per_page=20,
)
working_dir = gr.State()
submit.click(
fn=assert_input_image,
inputs=[input_image],
queue=False,
).success(
fn=prepare_working_dir,
outputs=[working_dir],
queue=False,
).success(
fn=preprocess_fn,
inputs=[input_image, checkbox_rembg, checkbox_recenter, working_dir],
outputs=[processed_image],
).success(
fn=core_fn,
inputs=[processed_image, slider_cam_dist, working_dir],
outputs=[output_video],
)
demo.queue()
demo.launch()
def launch_gradio_app():
os.environ.update({
"APP_ENABLED": "1",
"APP_MODEL_NAME": "zxhezexin/openlrm-mix-base-1.1",
"APP_INFER": "./configs/infer-gradio.yaml",
"APP_TYPE": "infer.lrm",
"NUMBA_THREADING_LAYER": 'omp',
})
from openlrm.runners import REGISTRY_RUNNERS
from openlrm.runners.infer.base_inferrer import Inferrer
InferrerClass : Inferrer = REGISTRY_RUNNERS[os.getenv("APP_TYPE")]
with InferrerClass() as inferrer:
init_preprocessor()
if os.getenv('SYSTEM') != 'spaces':
from openlrm.utils.proxy import no_proxy
demo = no_proxy(demo_openlrm)
else:
demo = demo_openlrm
demo(infer_impl=inferrer.infer_single)
if __name__ == '__main__':
launch_gradio_app()
|