Spaces:
Running
on
L4
Running
on
L4
File size: 16,123 Bytes
10e9b7d eccf8e4 8fcb930 3c4371f 8fcb930 15b3a99 6492713 15b3a99 6dc5982 15b3a99 10e9b7d 613fdf5 3925f9b 613fdf5 d59f015 e80aab9 3db6293 e80aab9 24bb0c6 8e4d2c9 c835a09 a43a8a2 8b4bcba 8e4d2c9 24bb0c6 8b4bcba 24bb0c6 8e4d2c9 c835a09 8b4bcba 8e4d2c9 31243f4 d59f015 31243f4 613fdf5 8e4d2c9 613fdf5 31243f4 8e4d2c9 785687c 8e4d2c9 613fdf5 8e4d2c9 120a2b5 4802fca 8e4d2c9 78e3211 120a2b5 8e4d2c9 2418331 3c5c351 2418331 3c5c351 2418331 a43a8a2 2418331 8e4d2c9 613fdf5 8e4d2c9 613fdf5 03aa28e 613fdf5 8b4bcba 613fdf5 03aa28e 613fdf5 03aa28e 613fdf5 8b4bcba 03aa28e 613fdf5 8e4d2c9 613fdf5 8e4d2c9 613fdf5 8e4d2c9 1ec9653 8e4d2c9 1ec9653 8e4d2c9 24bb0c6 1ec9653 8e4d2c9 613fdf5 8e4d2c9 6492713 613fdf5 8e4d2c9 613fdf5 8e4d2c9 4021bf3 1ec9653 6492713 019c212 30b42bb 6492713 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 30b42bb 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import gradio as gr
import requests
import json
import torch
import pandas as pd
import inspect
import os
import gc
import torch, transformers
print(f"PyTorch: {torch.__version__}")
print(f"Transformers: {transformers.__version__}")
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
try:
from smolagents import CodeAgent, DuckDuckGoSearchTool, TransformersModel
SMOLAGENTS_AVAILABLE = True
except ImportError:
print("Warning: smolagents not available, using fallback implementation")
SMOLAGENTS_AVAILABLE = False
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
CURRENT_PROMPT = """You are a helpful assistant that can use tools including web-search and writing Python code to answer questions.
Question: {question}
To answer this question:
1. If you need current information or facts you're unsure about, use the web_search tool
2. If you need to transcribe audio, import smolagents and instantiate 'transcriber = smolagents.Transcriber()'
3. Write Python code to solve the problem
4. Make sure your final answer is clear and direct
Available tools:
- web_search(query: str) β str
- visit_webpage(url: str) β str
- transcriber(audio_file_path: str) β str
- python(code: str) β Any
- final_answer(answer: str) β None
Note: add "Wikipedia" to web searches in order to get expert results from Wikipedia.
Please provide a complete solution that ends with the correct final answer."""
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
"""
Basic agent using smolagents CodeAgent with DuckDuckGoSearchTool.
"""
def __init__(self):
print("BasicAgent initialized.")
# Check GPU availability
print(f"π GPU Check:")
print(f" - CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f" - CUDA device count: {torch.cuda.device_count()}")
print(f" - Current device: {torch.cuda.current_device()}")
print(f" - Device name: {torch.cuda.get_device_name()}")
print(f" - Device memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
else:
print(" - No CUDA devices found, will use CPU")
if SMOLAGENTS_AVAILABLE:
try:
# Initialize the model
print("π€ Initializing TransformersModel...")
self.model = TransformersModel(
model_id="Qwen/Qwen2.5-Coder-14B",
torch_dtype=torch.bfloat16,
device_map="auto",
)
if hasattr(self.model, 'tokenizer') and self.model.tokenizer is not None:
# Set left padding for better batching with causal models
self.model.tokenizer.padding_side = "left"
# Set pad token properly - don't use eos_token as pad_token
if self.model.tokenizer.pad_token is None:
# Use a different token than eos for padding
if hasattr(self.model.tokenizer, 'unk_token') and self.model.tokenizer.unk_token is not None:
self.model.tokenizer.pad_token = self.model.tokenizer.unk_token
else:
# Add a new pad token
self.model.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
# Don't set pad_to_multiple_of for now as it may cause issues
print("β
Applied tokenizer padding fix")
# If the model has a processor with tokenizer, fix that too
if hasattr(self.model, 'processor') and hasattr(self.model.processor, 'tokenizer'):
self.model.processor.tokenizer.padding_side = "left"
if self.model.processor.tokenizer.pad_token is None:
self.model.processor.tokenizer.pad_token = self.model.processor.tokenizer.eos_token
self.model.processor.tokenizer.pad_to_multiple_of = 64
print("β
Applied processor tokenizer padding fix")
# Verify where model actually loaded
if hasattr(self.model, 'device'):
print(f"β
Model loaded on device: {self.model.device}")
elif hasattr(self.model, 'model') and hasattr(self.model.model, 'device'):
print(f"β
Model loaded on device: {self.model.model.device}")
else:
print("β
Model loaded (device info not directly accessible)")
# Create CodeAgent with DuckDuckGoSearchTool and additional imports
self.agent = CodeAgent(
tools=[],
model=self.model,
max_steps=24,
additional_authorized_imports=[
'math', 'statistics', 're', # Basic computation
'requests', 'json', # Web requests and JSON
'pandas', 'numpy', 'openpyxl',# Data analysis
'zipfile', 'os', # File processing
'datetime', 'time', # Date/time operations
'smolagents'
],
add_base_tools=True,
)
self.tools_available = True
print("β
Smolagents CodeAgent initialized with DuckDuckGoSearchTool")
except Exception as e:
print(f"β οΈ Error initializing smolagents: {e}")
import traceback
traceback.print_exc()
self.tools_available = False
else:
self.tools_available = False
if not self.tools_available:
print("β οΈ Using fallback implementation without smolagents")
def _run_smolagents(self, question):
"""Run question through smolagents CodeAgent with enhanced prompting."""
try:
# Use the global CURRENT_PROMPT variable
formatted_question = CURRENT_PROMPT.format(question=question)
print(f"π Processing question: {question}")
print(f"π§ Available tools: {[tool.__class__.__name__ for tool in self.agent.tools]}")
# Run the agent
with torch.no_grad():
result = self.agent.run(formatted_question)
print(f"Raw result: {result}")
# Clean up the result (remove any remaining prefixes)
if isinstance(result, str):
result = result.strip()
# Remove common prefixes
prefixes_to_remove = ["The answer is ", "Answer: ", "Final answer: "]
for prefix in prefixes_to_remove:
if result.startswith(prefix):
result = result[len(prefix):].strip()
return result
except Exception as e:
import traceback
return f"Agent error: {e}\n{traceback.format_exc()}"
def _fallback_implementation(self, question):
"""Fallback when smolagents is not available."""
return f"Smolagents not available. Question received: {question}"
def __call__(self, question):
"""Process a question using the smolagents CodeAgent or fallback."""
if self.tools_available:
return self._run_smolagents(question)
else:
return self._fallback_implementation(question)
def cleanup_memory():
"""Centralized memory cleanup function"""
if torch.cuda.is_available():
torch.cuda.synchronize()
import time
time.sleep(0.1)
torch.cuda.empty_cache()
gc.collect()
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
finally:
cleanup_memory()
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"β
SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"β
SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |