Spaces:
Runtime error
Runtime error
File size: 1,839 Bytes
3f3da6d c7b6585 3f3da6d 3a3fa0c 3f3da6d c7b6585 3f3da6d 5ecfb97 38629bc 5ecfb97 3f3da6d 5ecfb97 7ea38a3 5ecfb97 295ab92 5ecfb97 3a3fa0c 5ecfb97 295ab92 5ecfb97 3f3da6d 5ecfb97 3f3da6d 5ecfb97 3f3da6d 5ecfb97 3f3da6d 5ecfb97 3f3da6d f447626 0044283 3f3da6d e2167bf 3f3da6d 57c2b2d 6d0987e f447626 0aa401d d136b79 3f221c4 3f3da6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import gradio as gr
import numpy as np
from PIL import Image
from tensorflow.keras import models
from tensorflow.keras.preprocessing.image import load_img
import tensorflow as tf
from hugsvision.inference.TorchVisionClassifierInference import TorchVisionClassifierInference
models_name = [
"VGG16",
"DenseNet121",
"DenseNet"
]
# open categories.txt in read mode
categories = open("categories.txt", "r")
labels = categories.readline().split(";")
# create a radio
radio = gr.inputs.Radio(models_name, default="DenseNet121", type="value")
def predict_image(image, model_name):
# model create by keras
if model_name == "DenseNet":
image = np.array(image) / 255
image = np.expand_dims(image, axis=0)
model = model = models.load_model("./models/" + model_name + "/model.h5")
pred = model.predict(image)
pred = dict((labels[i], "%.2f" % pred[0][i]) for i in range(len(labels)))
# model create by HugsVision
else:
image = Image.fromarray(np.uint8(image)).convert('RGB')
classifier = TorchVisionClassifierInference(
model_path = "./models/" + model_name
)
pred = classifier.predict_image(img=image, return_str=False)
for key in pred.keys():
pred[key] = pred[key]/100
print(pred)
return pred
image = gr.inputs.Image(shape=(300, 300), label="Upload Your Image Here")
label = gr.outputs.Label(num_top_classes=len(labels))
samples = [["samples/" + p + ".jpg"] for p in labels]
interface = gr.Interface(
fn=predict_image,
inputs=[image, radio],
outputs=label,
capture_session=True,
allow_flagging=False,
title="🦈 Shark image classifier",
description="Made with HugsVision & ❤️",
examples=samples,
theme=None
)
interface.launch() |