zihaoz96 commited on
Commit
295ab92
1 Parent(s): b1cde34

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -12
app.py CHANGED
@@ -21,16 +21,7 @@ labels = categories.readline().split(";")
21
  radio = gr.inputs.Radio(models_name, default="DenseNet", type="value")
22
 
23
  def predict_image(image, model_name):
24
-
25
-
26
- print("======================")
27
- print(type(image))
28
- print(type(model_name))
29
- print("==========")
30
- print(image)
31
- print(model_name)
32
- print("======================")
33
-
34
  if model_name == "DenseNet":
35
  image = np.array(image) / 255
36
  image = np.expand_dims(image, axis=0)
@@ -39,8 +30,9 @@ def predict_image(image, model_name):
39
  pred = model.predict(image)
40
 
41
  pred = dict((labels[i], "%.2f" % pred[0][i]) for i in range(len(labels)))
42
- else:
43
 
 
 
44
  image = Image.fromarray(np.uint8(image)).convert('RGB')
45
  classifier = TorchVisionClassifierInference(
46
  model_path = "./models/" + model_name
@@ -58,7 +50,7 @@ def predict_image(image, model_name):
58
  image = gr.inputs.Image(shape=(300, 300), label="Upload Your Image Here")
59
  label = gr.outputs.Label(num_top_classes=len(labels))
60
 
61
- samples = [["samples/" + p + ".jpg"] for p in labels]
62
 
63
  interface = gr.Interface(
64
  fn=predict_image,
 
21
  radio = gr.inputs.Radio(models_name, default="DenseNet", type="value")
22
 
23
  def predict_image(image, model_name):
24
+ # model create by keras
 
 
 
 
 
 
 
 
 
25
  if model_name == "DenseNet":
26
  image = np.array(image) / 255
27
  image = np.expand_dims(image, axis=0)
 
30
  pred = model.predict(image)
31
 
32
  pred = dict((labels[i], "%.2f" % pred[0][i]) for i in range(len(labels)))
 
33
 
34
+ # model create by HugsVision
35
+ else:
36
  image = Image.fromarray(np.uint8(image)).convert('RGB')
37
  classifier = TorchVisionClassifierInference(
38
  model_path = "./models/" + model_name
 
50
  image = gr.inputs.Image(shape=(300, 300), label="Upload Your Image Here")
51
  label = gr.outputs.Label(num_top_classes=len(labels))
52
 
53
+ samples = [["samples/" + p + ".jpg", p] for p in labels]
54
 
55
  interface = gr.Interface(
56
  fn=predict_image,