Spaces:
Sleeping
Sleeping
File size: 10,251 Bytes
28c6826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import pickle
import torch
import torch.nn as nn
import numpy as np
import os
from tqdm import tqdm
from torchvision.utils import save_image
from torch import distributed as dist
from loguru import logger
logging = logger
def set_logger(log_level='info', fname=None):
import logging as _logging
handler = logging.get_absl_handler()
formatter = _logging.Formatter('%(asctime)s - %(filename)s - %(message)s')
handler.setFormatter(formatter)
logging.set_verbosity(log_level)
if fname is not None:
handler = _logging.FileHandler(fname)
handler.setFormatter(formatter)
logging.get_absl_logger().addHandler(handler)
def dct2str(dct):
return str({k: f'{v:.6g}' for k, v in dct.items()})
def get_nnet(name, **kwargs):
if name == 'uvit_t2i_vq':
from libs.uvit_t2i_vq import UViT
return UViT(**kwargs)
elif name == 'uvit_vq':
from libs.uvit_vq import UViT
return UViT(**kwargs)
else:
raise NotImplementedError(name)
def set_seed(seed: int):
if seed is not None:
torch.manual_seed(seed)
np.random.seed(seed)
def get_optimizer(params, name, **kwargs):
if name == 'adam':
from torch.optim import Adam
return Adam(params, **kwargs)
elif name == 'adamw':
from torch.optim import AdamW
return AdamW(params, **kwargs)
else:
raise NotImplementedError(name)
def customized_lr_scheduler(optimizer, warmup_steps=-1):
from torch.optim.lr_scheduler import LambdaLR
def fn(step):
if warmup_steps > 0:
return min(step / warmup_steps, 1)
else:
return 1
return LambdaLR(optimizer, fn)
def get_lr_scheduler(optimizer, name, **kwargs):
if name == 'customized':
return customized_lr_scheduler(optimizer, **kwargs)
else:
raise NotImplementedError(name)
def ema(model_dest: nn.Module, model_src: nn.Module, rate):
param_dict_src = dict(model_src.named_parameters())
for p_name, p_dest in model_dest.named_parameters():
p_src = param_dict_src[p_name]
assert p_src is not p_dest
if 'adapter' not in p_name:
p_dest.data.mul_(rate).add_((1 - rate) * p_src.data)
else:
p_dest.data = p_src.detach().clone()
class TrainState(object):
def __init__(self, optimizer, lr_scheduler, step, nnet=None, nnet_ema=None):
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.step = step
self.nnet = nnet
self.nnet_ema = nnet_ema
def ema_update(self, rate=0.9999):
if self.nnet_ema is not None:
ema(self.nnet_ema, self.nnet, rate)
def save(self, path, adapter_only=False,name=""):
os.makedirs(path, exist_ok=True)
torch.save(self.step, os.path.join(path, 'step.pth'))
if adapter_only:
torch.save(self.nnet.adapter.state_dict(), os.path.join(path, name+'adapter.pth'))
else:
for key, val in self.__dict__.items():
if key != 'step' and val is not None:
torch.save(val.state_dict(), os.path.join(path, f'{key}.pth'))
def make_dict(self,model,state_dict):
state = {}
for k in model.state_dict().keys():
if k in state_dict:
state[k] = state_dict[k].clone()
else:
state[k] = model.state_dict()[k].clone()
return state
def load(self, path):
logging.info(f'load from {path}')
self.step = torch.load(os.path.join(path, 'step.pth'), map_location='cpu')
for key, val in self.__dict__.items():
if key != 'step' and val is not None and key != 'optimizer' and key != 'lr_scheduler':
if key == 'nnet' or key == 'nnet_ema':
val.load_state_dict(self.make_dict(val,torch.load(os.path.join(path, f'{key}.pth'), map_location='cpu')))
else:
val.load_state_dict(torch.load(os.path.join(path, f'{key}.pth'), map_location='cpu'))
def load_adapter(self,path):
logging.info('load adapter from {}'.format(path))
adapter = torch.load(path,map_location='cpu')
keys=['nnet','nnet_ema']
for key in keys:
if key in self.__dict__:
self.__dict__[key].adapter.load_state_dict(adapter)
else:
logging.info('adapter not in state_dict')
def resume(self, ckpt_root,adapter_path=None, step=None):
if not os.path.exists(ckpt_root):
return
if ckpt_root.endswith('.ckpt'):
ckpt_path = ckpt_root
else:
if step is None:
ckpts = list(filter(lambda x: '.ckpt' in x, os.listdir(ckpt_root)))
if not ckpts:
return
steps = map(lambda x: int(x.split(".")[0]), ckpts)
step = max(steps)
ckpt_path = os.path.join(ckpt_root, f'{step}.ckpt')
logging.info(f'resume from {ckpt_path}')
self.load(ckpt_path)
if adapter_path is not None:
self.load_adapter(adapter_path)
def to(self, device):
for key, val in self.__dict__.items():
if isinstance(val, nn.Module):
val.to(device)
def freeze(self):
self.nnet.requires_grad_(False)
for name, p in self.nnet.named_parameters():
if 'adapter' in name:
p.requires_grad_(True)
def cnt_params(model):
return sum(param.numel() for param in model.parameters())
def initialize_train_state(config, device):
params = []
nnet = get_nnet(**config.nnet)
params += nnet.adapter.parameters()
nnet_ema = get_nnet(**config.nnet)
nnet_ema.eval()
logging.info(f'nnet has {cnt_params(nnet)} parameters')
optimizer = get_optimizer(params, **config.optimizer)
lr_scheduler = get_lr_scheduler(optimizer, **config.lr_scheduler)
train_state = TrainState(optimizer=optimizer, lr_scheduler=lr_scheduler, step=0,
nnet=nnet, nnet_ema=nnet_ema)
train_state.ema_update(0)
train_state.to(device)
return train_state
def amortize(n_samples, batch_size):
k = n_samples // batch_size
r = n_samples % batch_size
return k * [batch_size] if r == 0 else k * [batch_size] + [r]
def sample2dir(accelerator, path, n_samples, mini_batch_size, sample_fn, unpreprocess_fn=None, dist=True):
if path:
os.makedirs(path, exist_ok=True)
idx = 0
batch_size = mini_batch_size * accelerator.num_processes if dist else mini_batch_size
for _batch_size in tqdm(amortize(n_samples, batch_size), disable=not accelerator.is_main_process, desc='sample2dir'):
samples = unpreprocess_fn(sample_fn(mini_batch_size))
if dist:
samples = accelerator.gather(samples.contiguous())[:_batch_size]
if accelerator.is_main_process:
for sample in samples:
save_image(sample, os.path.join(path, f"{idx}.png"))
idx += 1
def grad_norm(model):
total_norm = 0.
for p in model.parameters():
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
return total_norm
from collections import defaultdict, deque
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter=" "):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def add_meter(self, name, meter):
self.meters[name] = meter
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
from torch._six import inf
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(
torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
return total_norm
|