Spaces:
Starting
on
T4
Starting
on
T4
File size: 11,348 Bytes
28c6826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
"""Pytorch impl of MxNet Gluon ResNet/(SE)ResNeXt variants
This file evolved from https://github.com/pytorch/vision 'resnet.py' with (SE)-ResNeXt additions
and ports of Gluon variations (https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/resnet.py)
by Ross Wightman
"""
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import SEModule
from .registry import register_model
from .resnet import ResNet, Bottleneck, BasicBlock
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'conv1', 'classifier': 'fc',
**kwargs
}
default_cfgs = {
'gluon_resnet18_v1b': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet18_v1b-0757602b.pth'),
'gluon_resnet34_v1b': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet34_v1b-c6d82d59.pth'),
'gluon_resnet50_v1b': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1b-0ebe02e2.pth'),
'gluon_resnet101_v1b': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1b-3b017079.pth'),
'gluon_resnet152_v1b': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1b-c1edb0dd.pth'),
'gluon_resnet50_v1c': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1c-48092f55.pth',
first_conv='conv1.0'),
'gluon_resnet101_v1c': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1c-1f26822a.pth',
first_conv='conv1.0'),
'gluon_resnet152_v1c': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1c-a3bb0b98.pth',
first_conv='conv1.0'),
'gluon_resnet50_v1d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1d-818a1b1b.pth',
first_conv='conv1.0'),
'gluon_resnet101_v1d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1d-0f9c8644.pth',
first_conv='conv1.0'),
'gluon_resnet152_v1d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1d-bd354e12.pth',
first_conv='conv1.0'),
'gluon_resnet50_v1s': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1s-1762acc0.pth',
first_conv='conv1.0'),
'gluon_resnet101_v1s': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1s-60fe0cc1.pth',
first_conv='conv1.0'),
'gluon_resnet152_v1s': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1s-dcc41b81.pth',
first_conv='conv1.0'),
'gluon_resnext50_32x4d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext50_32x4d-e6a097c1.pth'),
'gluon_resnext101_32x4d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext101_32x4d-b253c8c4.pth'),
'gluon_resnext101_64x4d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext101_64x4d-f9a8e184.pth'),
'gluon_seresnext50_32x4d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext50_32x4d-90cf2d6e.pth'),
'gluon_seresnext101_32x4d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext101_32x4d-cf52900d.pth'),
'gluon_seresnext101_64x4d': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext101_64x4d-f9926f93.pth'),
'gluon_senet154': _cfg(url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_senet154-70a1a3c0.pth',
first_conv='conv1.0'),
}
def _create_resnet(variant, pretrained=False, **kwargs):
return build_model_with_cfg(ResNet, variant, default_cfg=default_cfgs[variant], pretrained=pretrained, **kwargs)
@register_model
def gluon_resnet18_v1b(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
"""
model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2], **kwargs)
return _create_resnet('gluon_resnet18_v1b', pretrained, **model_args)
@register_model
def gluon_resnet34_v1b(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
"""
model_args = dict(block=BasicBlock, layers=[3, 4, 6, 3], **kwargs)
return _create_resnet('gluon_resnet34_v1b', pretrained, **model_args)
@register_model
def gluon_resnet50_v1b(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], **kwargs)
return _create_resnet('gluon_resnet50_v1b', pretrained, **model_args)
@register_model
def gluon_resnet101_v1b(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], **kwargs)
return _create_resnet('gluon_resnet101_v1b', pretrained, **model_args)
@register_model
def gluon_resnet152_v1b(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
"""
model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], **kwargs)
return _create_resnet('gluon_resnet152_v1b', pretrained, **model_args)
@register_model
def gluon_resnet50_v1c(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', **kwargs)
return _create_resnet('gluon_resnet50_v1c', pretrained, **model_args)
@register_model
def gluon_resnet101_v1c(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', **kwargs)
return _create_resnet('gluon_resnet101_v1c', pretrained, **model_args)
@register_model
def gluon_resnet152_v1c(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
"""
model_args = dict(block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', **kwargs)
return _create_resnet('gluon_resnet152_v1c', pretrained, **model_args)
@register_model
def gluon_resnet50_v1d(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('gluon_resnet50_v1d', pretrained, **model_args)
@register_model
def gluon_resnet101_v1d(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('gluon_resnet101_v1d', pretrained, **model_args)
@register_model
def gluon_resnet152_v1d(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
return _create_resnet('gluon_resnet152_v1d', pretrained, **model_args)
@register_model
def gluon_resnet50_v1s(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=64, stem_type='deep', **kwargs)
return _create_resnet('gluon_resnet50_v1s', pretrained, **model_args)
@register_model
def gluon_resnet101_v1s(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=64, stem_type='deep', **kwargs)
return _create_resnet('gluon_resnet101_v1s', pretrained, **model_args)
@register_model
def gluon_resnet152_v1s(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=64, stem_type='deep', **kwargs)
return _create_resnet('gluon_resnet152_v1s', pretrained, **model_args)
@register_model
def gluon_resnext50_32x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt50-32x4d model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, **kwargs)
return _create_resnet('gluon_resnext50_32x4d', pretrained, **model_args)
@register_model
def gluon_resnext101_32x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt-101 model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4, **kwargs)
return _create_resnet('gluon_resnext101_32x4d', pretrained, **model_args)
@register_model
def gluon_resnext101_64x4d(pretrained=False, **kwargs):
"""Constructs a ResNeXt-101 model.
"""
model_args = dict(block=Bottleneck, layers=[3, 4, 23, 3], cardinality=64, base_width=4, **kwargs)
return _create_resnet('gluon_resnext101_64x4d', pretrained, **model_args)
@register_model
def gluon_seresnext50_32x4d(pretrained=False, **kwargs):
"""Constructs a SEResNeXt50-32x4d model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4,
block_args=dict(attn_layer=SEModule), **kwargs)
return _create_resnet('gluon_seresnext50_32x4d', pretrained, **model_args)
@register_model
def gluon_seresnext101_32x4d(pretrained=False, **kwargs):
"""Constructs a SEResNeXt-101-32x4d model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=32, base_width=4,
block_args=dict(attn_layer=SEModule), **kwargs)
return _create_resnet('gluon_seresnext101_32x4d', pretrained, **model_args)
@register_model
def gluon_seresnext101_64x4d(pretrained=False, **kwargs):
"""Constructs a SEResNeXt-101-64x4d model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], cardinality=64, base_width=4,
block_args=dict(attn_layer=SEModule), **kwargs)
return _create_resnet('gluon_seresnext101_64x4d', pretrained, **model_args)
@register_model
def gluon_senet154(pretrained=False, **kwargs):
"""Constructs an SENet-154 model.
"""
model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], cardinality=64, base_width=4, stem_type='deep',
down_kernel_size=3, block_reduce_first=2, block_args=dict(attn_layer=SEModule), **kwargs)
return _create_resnet('gluon_senet154', pretrained, **model_args)
|