Spaces:
Sleeping
Sleeping
File size: 4,008 Bytes
28c6826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import torch
import torch.nn.functional as F
from torch import nn
from taming.modules.diffusionmodules.model import Encoder, Decoder
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
class VQModel(nn.Module):
def __init__(self,
ddconfig,
lossconfig,
n_embed,
embed_dim,
ckpt_path=None,
ignore_keys=[],
image_key="image",
colorize_nlabels=None,
monitor=None,
remap=None,
sane_index_shape=False, # tell vector quantizer to return indices as bhw
):
super().__init__()
self.n_embed = n_embed
self.embed_dim = embed_dim
self.image_key = image_key
self.encoder = Encoder(**ddconfig)
self.decoder = Decoder(**ddconfig)
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
remap=remap, sane_index_shape=sane_index_shape)
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
self.image_key = image_key
if colorize_nlabels is not None:
assert type(colorize_nlabels) == int
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
if monitor is not None:
self.monitor = monitor
self.eval()
self.requires_grad_(False)
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")
if "state_dict" in sd.keys():
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
print("Strict load")
self.load_state_dict(sd, strict=True)
print(f"Restored from {path}")
def encode(self, x):
h = self.encoder(x)
quant, emb_loss, info = self.quantize(h)
return quant, emb_loss, info
def decode(self, quant):
dec = self.decoder(quant)
return dec
def decode_code(self, code_b):
quant_b = self.quantize.get_codebook_entry(code_b, [*code_b.shape, self.embed_dim])
dec = self.decode(quant_b)
return dec
def forward(self, input):
quant, diff, info = self.encode(input)
return quant, diff, info
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
return x.float()
def get_last_layer(self):
return self.decoder.conv_out.weight
def log_images(self, batch, **kwargs):
log = dict()
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
xrec, _ = self(x)
if x.shape[1] > 3:
# colorize with random projection
assert xrec.shape[1] > 3
x = self.to_rgb(x)
xrec = self.to_rgb(xrec)
log["inputs"] = x
log["reconstructions"] = xrec
return log
def to_rgb(self, x):
assert self.image_key == "segmentation"
if not hasattr(self, "colorize"):
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
x = F.conv2d(x, weight=self.colorize)
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
return x
def get_model(config_file='vq-f16-jax.yaml'):
from omegaconf import OmegaConf
config = OmegaConf.load(f'configs/vae_configs/{config_file}').model
return VQModel(ddconfig=config.params.ddconfig,
lossconfig=config.params.lossconfig,
n_embed=config.params.n_embed,
embed_dim=config.params.embed_dim,
ckpt_path='assets/vqgan_jax_strongaug.ckpt')
|